Affiliation:
1. From the Intramural Research Support Program, Science Applications International Corporation Frederick, National Cancer Institute–Frederick Cancer Research and Development Center, and Laboratory of Molecular Immunoregulation, National Cancer Institute, National Institutes of Health, Frederick Cancer Research and Development Center, Frederick, Maryland 21702
Abstract
Macrophage infiltration into inflammatory sites is generally preceded by neutrophils. This suggests neutrophils may be the source of chemotactic factors for monocytes. To identify these putative monocyte attractants, we have systematically prepared neutrophil granules, lysed them, and sequentially purified the released proteins by several reverse phase chromatography procedures. Assays for monocyte chemotactic activity of the chromatography fractions yielded a major peak of activity associated with a protein of 30 kD, according to SDS-PAGE analysis. NH2-terminal sequence of the protein revealed this to be identical to cathepsin G. The monocyte chemotactic activity of human cathepsin G was dose dependent with optimal concentration at 0.5–1 μg/ml. Cathepsin G is chemotactic rather than chemokinetic for monocytes, as demonstrated by checkerboard analysis. Cathepsin G–induced monocyte chemotaxis is partially pertussis toxin sensitive implying the involvement of a G protein–coupled receptor. Enzymatic activity of cathepsin G is associated with its monocyte chemotactic activity, since DFP- or PMSF-inactivated cathepsin G no longer induced monocyte migration. The chemotactic activity of cathepsin G can also be completely blocked by α1 antichymotrypsin, a specific inhibitor of chymotrypsin-like proteinases present in human plasma. In addition, cathepsin G is also a potent chemoattractant for neutrophils and a chemokinetic stimulant for T cells. In the course of pursuing these in vitro studies, we established that the T cell chemoattractant, azurocidin/CAP37 from human neutrophil granules, at doses of 0.05 to 5 μg/ml, was chemotactic for monocytes and neutrophils. As predicted from the in vitro chemotactic activity, subcutaneous injection of cathepsin G into BALB/c mice led to infiltration of both mononuclear cells and neutrophils. Thus, the transition of inflammatory exudate from neutrophil to mononuclear cells can be mediated, at least in part, by extracellular release of neutrophil granule proteins such as cathepsin G and azurocidin/CAP37.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
219 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献