Spontaneous tumor rejection by cbl-b–deficient CD8+ T cells

Author:

Loeser Stefanie1,Loser Karin2,Bijker Martijn S.3,Rangachari Manu1,van der Burg Sjoerd H.4,Wada Teiji1,Beissert Stefan2,Melief Cornelis J.M.3,Penninger Josef M.1

Affiliation:

1. Institute of Molecular Biotechnology of the Austrian Academy of Science, 1030 Vienna, Austria

2. Department of Dermatology and Interdisciplinary Center of Clinical Research, University of Münster, D-48149 Münster, Germany

3. Department of Immunohematology and Blood Transfusion

4. Department of Clinical Oncology, Leiden University Medical Centre, 2333 ZA Leiden, Netherlands

Abstract

The concept of tumor surveillance implies that specific and nonspecific components of the immune system eliminate tumors in the early phase of malignancy. Understanding the biochemical mechanisms of tumor immunosurveillance is of paramount significance because it might allow one to specifically modulate spontaneous antitumor activity. We report that inactivation of the E3 ligase Casitas B cell lymphoma-b (Cbl-b) confers spontaneous in vivo rejection of tumor cells that express human papilloma virus antigens. Moreover, cbl-b−/− mice develop significantly fewer ultraviolet B (UVB)–induced skin malignancies and reject UVB-induced skin tumors. CD8+ T cells were identified as key players in the spontaneous tumor rejection response. Loss of Cbl-b not only enhances antitumor reactivity of CD8+ T cells but also occurs in the absence of CD4+ T cells. Mechanistically, cbl-b−/− CD8+ T cells are resistant to T regulatory cell–mediated suppression and exhibit enhanced activation and rapid tumor infiltration. Importantly, therapeutic transfer of naive cbl-b−/− CD8+ T cells is sufficient to mediate rejection of established tumors. Even up to 1 yr after the first encounter with the tumor cells, cbl-b−/− mice carry an “anticancer memory.” These data identify Cbl-b as a key signaling molecule that controls spontaneous antitumor activity of cytotoxic T cells in different cancer models. Inhibition of Cbl-b is a novel approach to stimulate long-lasting immunity against cancer.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3