Deduced amino acid sequences of class 1 protein (PorA) from three strains of Neisseria meningitidis. Synthetic peptides define the epitopes responsible for serosubtype specificity.

Author:

McGuinness B1,Barlow A K1,Clarke I N1,Farley J E1,Anilionis A1,Poolman J T1,Heckels J E1

Affiliation:

1. Department of Microbiology, University of Southampton Medical School, United Kingdom.

Abstract

The previously determined nucleotide sequence of the porA gene, encoding the class 1 outer membrane protein of meningococcal strain MC50, has been used to clone and sequence the porA gene from two further strains with differing serosubtype specificities. Comparison of the predicted amino acid sequences of the three class 1 proteins revealed considerable structural homology with major variation confined to two discrete regions (VR1 and VR2). The high degree of structural homology between the sequences gave predicted secondary structures that were almost identical, with the variable domains located in hydrophilic regions that are likely to be surface located and hence accessible to antibody binding. The predicted amino acid sequences have been used to define the epitopes recognized by mAbs with serosubtype specificity. A series of overlapping decapeptides spanning each of the class 1 protein sequences have been synthesized on solid-phase supports and probed with mAbs. Antibodies with P1.16 and P1.15 subtype specificity reacted with sequences in the VR2 domain, while antibodies with P1.7 subtype specificity reacted with sequences in the VR1 domain. Further peptides have been constructed to define the minimum epitopes recognized by each antibody. Thus we have been able to define linear peptides on each class 1 protein molecule that are responsible for subtype specificity and that represent targets for a protective immune response.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3