Marked antiinflammatory effects of decentralization of the superior cervical ganglia.

Author:

Ramaswamy K1,Mathison R1,Carter L1,Kirk D1,Green F1,Davison J S1,Befus D1

Affiliation:

1. Department of Microbiology and Infectious Diseases, University of Calgary, Alberta, Canada.

Abstract

Intravenous challenge with parasite antigens in Nippostrongylus brasiliensis-sensitized rats resulted in anaphylactic shock and, in some animals, death. Surviving animals showed significant drop in mean arterial blood pressure, cardiac output, and blood flow to the trachea, bronchioles, and mesentery. After anaphylaxis, changes in the cellular and protein composition in bronchoalveolar lavage fluids (BALF) were assessed. 8 h after antigen challenge, there was significant influx of inflammatory cells and an increase in the levels of histamine and serum-derived immunoglobulins (IgG and IgM) in BALF. Chemotactic activity for neutrophils was also present in BALF. Once we established this anaphylaxis-induced model of pulmonary inflammation, we sought to determine whether or not the superior cervical ganglia (SCG) modulate this inflammation. We performed bilateral superior cervical ganglionectomy or decentralization of the SCG. Our results show that decentralization significantly reduced mortality (by 68%) after anaphylaxis. Furthermore, the increases in levels of serum-derived proteins, histamine, and influx of cells (especially neutrophils) observed in BALF after anaphylaxis were attenuated by both decentralization and ganglionectomy. By contrast, hemodynamic parameters in the respiratory tract and the presence of neutrophil chemotactic activity in BALF were not influenced by decentralization. Thus, the severity of pulmonary inflammation initiated by systemic anaphylaxis is depressed by bilateral ganglionectomy or decentralization of SCG.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3