Protection against lethal toxic shock by targeted disruption of the CD28 gene.

Author:

Saha B1,Harlan D M1,Lee K P1,June C H1,Abe R1

Affiliation:

1. Naval Medical Research Institute, Bethesda, Maryland 20889, USA.

Abstract

Toxic shock syndrome (TSS) is a multi system disorder resulting from superantigen-mediated cytokine production. Nearly 90% of the clinical cases of TSS arise due to an exotoxin, toxic shock syndrome toxin-1 (TSST-1), elaborated by toxigenic strains of Staphylococcus aureus. It is clearly established that besides antigen-specific signals a variety of costimulatory signals are required for full T cell activation. However, the nature and potential redundancy of costimulatory signals are incompletely understood, particularly with regards to superantigen-mediated T cell activation in vivo. Here we report that CD28-deficient mice (CD28-/-) are completely resistant to TSST-1-induced lethal TSS while CD28 (+/-) littermate mice were partially resistant to TSST-1. The mechanism for the resistance of the CD28 (-/-) mice was a complete abrogation of TNF-alpha accumulation in the serum and a nearly complete (90%) impairment of IFN-gamma secretion in response to TSST-1 injection. In contrast, the serum level of IL-2 was only moderately influenced by the variation of CD28 expression. CD28 (-/-) mice retained sensitivity to TNF-alpha as demonstrated by equivalent lethality after cytokine injection. These findings establish an essential requirement for CD28 costimulatory signals in TSST-1-induced TSS. The hierarchy of TSST-1 resistance among CD28 wild-type (CD28+/+), CD28 heterozygous (CD28+/-), and CD28-/- mice suggests a gene-dose effect, implying that the levels of T cell surface CD28 expression critically regulate superantigen-mediated costimulation. Finally, as these results demonstrate the primary and non-redundant role of CD28 receptors in the initiation of the in vivo cytokine cascade, they suggest therapeutic approaches for superantigen-mediated immunopathology.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 65 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3