Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant.

Author:

Weber M1,Uguccioni M1,Baggiolini M1,Clark-Lewis I1,Dahinden C A1

Affiliation:

1. Institute of Immunology and Allergology, University Hospital, Bern, Switzerland.

Abstract

Chemotactic cytokines of the CC subfamily (CC chemokines) are considered as major mediators of allergic inflammation owing their actions on basophil and eosinophil leukocytes. The monocyte chemotactic protein (MCP) 1 is a potent inducer of mediator release from basophils but is inactive on eosinophils. To obtain information on the structural determinants of the activities of MCP-1, we have synthesized several NH2-terminally truncated analogues and tested their effects on basophils and eosinophils. Through deletion of the NH2-terminal residue, MCP-1(2-76) was obtained, which was a potent activator of eosinophils, as assessed by chemotaxis, cytosolic free Ca2+ changes, actin polymerization, and that induction of the respiratory burst. In contrast, the activity of MCP-1(2-76) on basophil leukocytes was dramatically decreased (50-fold) compared with that of full-length MCP-1. Deletion of the next residue led to total loss of activity on eosinophil and basophil leukocytes. Analogues with three or four residue deletions, MCP-1(4-76) and MCP-1(5-76), were again active on both cells, whereas all further truncation analogues, MCP-1(6-76) through MCP-1(10-76), were inactive. Thus, a minimal structural modification can change receptor and target cell selectivity of MCP-1. Our observations indicate that the recognition sites of CC chemokine receptors on eosinophils and basophils are similar, although they discriminate between MCP-1 and MCP-1(2-76) and suggest NH2-terminal processing as a potential mechanism for the regulation of CC chemokine activities.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3