Down-regulation of Gfi-1 expression by TGF-β is important for differentiation of Th17 and CD103+ inducible regulatory T cells

Author:

Zhu Jinfang1,Davidson Todd S.1,Wei Gang1,Jankovic Dragana1,Cui Kairong1,Schones Dustin E.1,Guo Liying1,Zhao Keji1,Shevach Ethan M.1,Paul William E.1

Affiliation:

1. Laboratory of Immunology and Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases and Laboratory of Molecular Immunology, National Heart Lung and Blood Institute, National Institutes of Health, Bethesda, MD 20892

Abstract

Growth factor independent 1 (Gfi-1), a transcriptional repressor, is transiently induced during T cell activation. Interleukin (IL) 4 further induces Gfi-1, resulting in optimal Th2 cell expansion. We report a second important function of Gfi-1 in CD4 T cells: prevention of alternative differentiation by Th2 cells, and inhibition of differentiation of naive CD4 T cells to either Th17 or inducible regulatory T (iTreg) cells. In Gfi1−/− Th2 cells, the Rorc, Il23r, and Cd103 loci showed histone 3 lysine 4 trimethylation modifications that were lacking in wild-type Th2 cells, implying that Gfi-1 is critical for epigenetic regulation of Th17 and iTreg cell–related genes in Th2 cells. Enforced Gfi-1 expression inhibited IL-17 production and iTreg cell differentiation. Furthermore, a key inducer of both Th17 and iTreg cell differentiation, transforming growth factor β, repressed Gfi-1 expression, implying a reciprocal negative regulation of CD4 T cell fate determination. Chromatin immunoprecipitation showed direct binding of the Gfi-1–lysine-specific demethylase 1 repressive complex to the intergenic region of Il17a/Il17f loci and to intron 1 of Cd103. T cell–specific Gfi1 conditional knockout mice displayed a striking delay in the onset of experimental allergic encephalitis correlated with a dramatic increase of Foxp3+CD103+ CD4 T cells. Thus, Gfi-1 plays a critical role both in enhancing Th2 cell expansion and in repressing induction of Th17 and CD103+ iTreg cells.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3