Affiliation:
1. Molecular Cardiobiology Program, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, Connecticut 06536, USA.
Abstract
We have reported previously that activation of human umbilical vein endothelial cells (HUVECs) through CD40, using a recombinant soluble form of trimerized CD40 ligand, leads to induction of E-selectin, vascular cell adhesion molecule-1 (VCAM-1), and intercellular adhesion molecule-1 (ICAM-1). Here, we compare the effects of CD40 ligand with those of tumor necrosis factor (TNF) and interleukin 1 (IL-1). All three ligands induce transient increases in E-selectin (peak 4 h) and VCAM-1 (peak 8-24 h), as well as sustained increases in ICAM-1 (plateau 24 h). Quantitatively, TNF is more potent than IL-1, which is much more potent than CD40 ligand. The same hierarchy is observed for transcriptional activation of an E-selectin promoter reporter gene construct in transiently transfected HUVECs. TNF and CD40 ligand each induced activation of the transcription factors NF-kappa B, IRF-1, and ATF-2/c-Jun, measured by electrophoretic mobility shift assays, but this response appeared quantitatively similar. All three agents transiently (peak 30 min) activated Jun NH2-terminal kinase (JNK), which has been implicated in transcription of E-selectin through its actions on ATF-2/c-Jun. Activation of JNK again showed a hierarchy of potency (TNF > IL-1 > CD40 ligand), although the time course of induction was similar for all three agents. After 44 h of pretreatment, TNF, IL-1, and CD40 ligand each display homologous desensitization for reinduction of surface expression of E-selectin. A similar pattern of homologous desensitization for reactivation of JNK was observed. We conclude that TNF, IL-1, and CD40 ligand all activate similar responses in ECs, and that homologous desensitization of JNK may explain the inability of individual cytokines to reinduce E-selectin expression.
Publisher
Rockefeller University Press
Subject
Immunology,Immunology and Allergy
Cited by
104 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献