Human leukocyte elastase is an endogenous ligand for the integrin CR3 (CD11b/CD18, Mac-1, alpha M beta 2) and modulates polymorphonuclear leukocyte adhesion.

Author:

Cai T Q1,Wright S D1

Affiliation:

1. Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York 10021, USA.

Abstract

Integrin CR3 (CD11b/CD18, Mac-1, alpha M beta 2) mediates the transient adhesion of polymorphonuclear leukocytes (PMN) to surfaces coated with fibrinogen, C3bi, ICAM-1, and other ligands. Recent studies (Cai, T.-Q., and S.D. Wright 1995. J. Biol. Chem. 270:14358) suggest that adhesion may be favored by stimulus-dependent changes in the kinetics of ligand binding by CR3. Cell detachment, on the other hand, must occur by a different mechanism because binding kinetics cannot affect cell adhesion after binding of ligand has occurred. We have sought a mechanism that would reverse binding of ligand to CR3 and report here that lysates of PMN contain an endogenous ligand that binds CR3 and competes the binding of C3bi. Purification and sequence analysis identified the structurally homologous azurophilic granule proteins, elastase, protease 3, and azurocidin as candidates. Studies with purified elastase and azurocidin showed that each bound specifically to purified, immobilized CR3. Elastase may play a role in modulating integrin-mediated cell adhesion because it is expressed at the cell surface, and the expression level is inversely proportional to cell adhesivity. Furthermore, a monoclonal antibody against elastase prevented detachment of PMN from fibrinogen-coated surfaces and blocked chemotaxis, confirming a role for this protein in regulating integrin-mediated adhesion. These studies suggest a model for release of integrin-mediated cell adhesion in which endogenous ligands such as elastase may release adhesion by "'eluting" substrate-bound ligand. A role for the proteolytic activity of elastase appears likely but is not demonstrated in this study.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3