Primary stimulation by dendritic cells induces antiviral proliferative and cytotoxic T cell responses in vitro.

Author:

Macatonia S E1,Taylor P M1,Knight S C1,Askonas B A1

Affiliation:

1. Medical Research Council Clinical Research Centre, Harrow, Middlesex, United Kingdom.

Abstract

We used well-gassed hanging drop (20 microliters) cultures with high concentrations of purified T cells from normal BALB/c mice to examine whether dendritic cells (DC) can induce primary antiviral proliferative T cell responses and generate virus-specific CTL. We found that DC exposed to infectious influenza virus in vitro or in vivo in small numbers (0.1-1%) resulted in strong proliferation of responder T cells within 3 d, and this was strongly inhibited by antibodies to class II MHC molecules. In addition, in 5-d cultures, the influenza-treated DC generated CTL specifically able to lyse influenza-infected syngeneic target cells bearing MHC class I antigens. The most potent nucleoprotein (NP) epitope recognized by BALB/c CTL is peptide 147-158 (Arg156-) and influenza-infected DC in vitro stimulated CTL recognizing this peptide, thus mimicking the response in mice primed by intranasal influenza infection. We also induced T cell proliferation and virus-specific CTL in cultures of normal T cells by stimulating with DC pulsed with the natural NP sequence 147-158 or the potent peptide 147-158 (Arg156-). Small numbers of peritoneal exudate cells, after activation with Con A to produce class II MHC expression and after removal of DC with a specific mAb (33DI), did not lead to primary CTL generation but initiated secondary stimulation in vitro. Our results using the hanging drop culture method and DC as APC have implications for studying the T cell repertoire for viral components in humans without the necessity of previous immunization.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3