An L-arginine-dependent mechanism mediates kupffer cell inhibition of hepatocyte protein synthesis in vitro

Author:

Billiar TR,Curran RD,Stuehr DJ,West MA,Bentz BG,Simmons RL

Abstract

The hepatic failure associated with severe sepsis is characterized by specific, progressive, and often irreversible defects in hepatocellular metabolism (1). Although the etiologic microbe can often be identified, the direct causes and mechanisms of the hepatocellular dysfunction are poorly understood. We have hypothesized that Kupffer cells (KC), which interact with ambient septic stimuli, respond by providing signals to adjacent hepatocytes (HC) in sepsis . Furthermore, we have provided evidence (2, 3) that KC activated by LPS from Gram-negative bacteria can induce profound changes in the function of neighboring HC in coculture. In our model, coculture of either KC (2) or peritoneal macrophages (Mφ)(3) with HC normally promotes HC protein synthesis ([(3)H]leucine incorporation). The addition of LPS or killed Escherichia colt' to such cocultures induces a profound decrease in HC protein synthesis, as well as qualitative changes ([(35)S]methionine, SDS-gel electrophoresis) in protein synthesis without inducing HC death (2, 3) . In this report we show that the inhibition in protein synthesis is mediated via an L-arginine-dependent mechanism. The metabolism of L-arginine by activated Mφ to substances with cytostatic and even lethal effects on target cells is a relatively recent discovery. After the description by Stuehr and Marletta (4, 5) that LPS- triggered Mφ produced nitrite/nitrate (NO(2)(-)/NO(3)(-)), Hibbs et al. (6, 7) and Iyengar et al. (8) demonstrated that L-arginine was the substrate for the formation of both these nitrogen end products and citrulline. A role for the arginine-dependent mechanism in Mφ tumor cytotoxicity (6, 7) and microbiostatic activity (9) has been suggested. However, the in vivo functions of this novel Mφ mechanism have not yet been defined, but it is possible that there are both physiologic as well as pathologic roles. Our in vitro results raise the possibility that some metabolic responses to microbial invasion maybe partially mediated by the L-arginine-dependent mechanism. What other metabolic responses are affected and the possible pathologic consequences remain to be studied.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 346 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Tolerogenic properties of liver macrophages in non‐alcoholic steatohepatitis;Liver International;2020-01-08

2. l-Arginine and nitric oxide synthesis in the cells with inducible NO synthase;Russian Chemical Bulletin;2019-01

3. Engineered Human Liver Cocultures for Investigating Drug-Induced Liver Injury;Methods in Pharmacology and Toxicology;2018

4. Nitric Oxide and the Liver;Liver Pathophysiology;2017

5. Oxidative Stress, Antioxidant Defenses, and the Liver;Oxidative Stress in Applied Basic Research and Clinical Practice;2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3