Age-resolving Osteopetrosis: A Rat Model Implicating Microphthalmia and the Related Transcription Factor TFE3

Author:

Weilbaecher Katherine N.1,Hershey Christine L.1,Takemoto Clifford M.1,Horstmann Martin A.1,Hemesath Timothy J.1,Tashjian Armen H.1,Fisher David E.1

Affiliation:

1. From the Dana Farber Cancer Institute, Department of Pediatric Oncology, Harvard Medical School, Boston, Massachusetts 02115; and the Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School and Department of Cancer Cell Biology, Harvard School of Public Health, Boston, Massachusetts 02115

Abstract

Microphthalmia (Mi) is a basic helix-loop-helix–leucine zipper (b-HLH-ZIP) transcription factor implicated in pigmentation, mast cells, and bone development. Two dominant-negative mi alleles (mi/mi and Mior/Mior) in mice cause osteopetrosis. In contrast, osteopetrosis has not been observed in a number of recessive mi alleles, suggesting the existence of Mi protein partners important in osteoclast function. An osteopetrotic rat of unknown genetic defect (mib) has been described whose skeletal sclerosis improves dramatically with age and that is associated with pigmentation defects reminiscent of mouse mi alleles. Here we report that this rat strain harbors a large genomic deletion encompassing the 3′ half of mi including most of the b-HLH-ZIP region. Osteoclasts from these animals lack Mi protein in contrast to wild-type rat, mouse, and human osteoclasts. Mi is not detectable in primary osteoblasts. In addition TFE3, a b-HLH-ZIP transcription factor related to Mi, was found to be expressed in osteoclasts, but not osteoblasts, and to coimmunoprecipitate with Mi. These results demonstrate the existence of members of a family of biochemically related transcription factors that may cooperate to play a central role in osteoclast function and possibly in age-related osteoclast homeostasis.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Reference52 articles.

Cited by 82 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3