Chemiluminescence of phagocytic cells caused by N-formylmethionyl peptides

Author:

Hatch GE,Gardner DE,Menzel DB

Abstract

N-formylmethionyl (F-Met) peptides, when added alone to macrophages or polymorphonuclear leukocytes (PMN), were found to induce a chemiluminescent response of shorter duration than that produced by the commonly employed particulate stimulant, zymosan. The cellular nature of F-Met peptide-induced chemiluminescence was indicated by its dependence on cell concentration, and by its inhibition by cell disruption, heat inactivation, or previous maximal stimulation by the peptides. Comparison of PMN and macrophages from different species showed that the maximal chemiluminescent response seen in the dose-response curve of F-Met- Phe was different in different cell types. Chemiluminescence reached highest values in human PMN, it was intermediate in guinea pig macrophages and PMN, and in rabbit PMN; but it was nonexistent in rabbit alveolar macrophages and very low in rabbit peritoneal macrophages. A definite relationship was observed between peptide structure and chemiluminescent activity. Met-Phe, F- Met and Phe were inactive even at millimolar concentrations, while F-Met-Phe caused chemiluminescence at micromolar concentrations. Four active peptides were tested in guinea pig, rabbit, and human PMN, and in guinea pig alveolar and peritoneal macrophages. The relative activity of these peptides was the same in all cells studied, e.g. F-Met-Leu-Phe >> F-Met-Phe > F-Met-Val > F- Met-Ala. The values of ED50 for each peptide were also comparable to previously reported ED50 values of these peptides in inducing lysosomal enzyme release. These results were seen both in the presence and absence ofthe chemiluminescent oxidant indicator, luminol. Low concentrations of superoxide dismutase (10 μg/ml) completely inhibited chemiluminescence caused by the F-Met peptides, suggesting the involvement of 0(2)(-) or O(2)(-)-derived compounds in this response. Sodium azide, an inhibitor of peroxidase reactions, had either no effect or a slight inhibitory effect on chemiluminescence. However, when the extracellular release of lysosomal enzymes was induced by cytochalasin B, an azide- inhibitable enhancement of chemiluminescence was seen in PMN, but not in macrophages. This effect appears to be correlated with the presence of granule-associated myeloperoxidase. Although azide-inhibitable peroxidases could be a potential source of light, they did not appear to be a significant contributor in these experiments. Based on these results and on those of previous investigators, we postulate that the F-Met-peptides stimulate 0(2)(-) production in addition to stimulating lysosomal enzyme release and chemotaxis. The similar structure- activity relationship which appears to exist for these processes may indicate that they are all initiated by a single receptor mechanism. Since F-Met peptides are formed in bacteria it is likely that their actions represent an important physiologic response.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3