Allelic polymorphism in transcriptional regulatory regions of HLA-DQB genes.

Author:

Andersen L C1,Beaty J S1,Nettles J W1,Seyfried C E1,Nepom G T1,Nepoom B S1

Affiliation:

1. Virginia Mason Research Center, Seattle, Washington 98101.

Abstract

Class II genes of the human major histocompatibility complex (MHC) are highly polymorphic. Allelic variation of structural genes provides diversity in immune cell interactions, contributing to the formation of the T cell repertoire and to susceptibility to certain autoimmune diseases. We now report that allelic polymorphism also exists in the promoter and upstream regulatory regions (URR) of human histocompatibility leukocyte antigen (HLA) class II genes. Nucleotide sequencing of these regulatory regions of seven alleles of the DQB locus reveals a number of allele-specific polymorphisms, some of which lie in functionally critical consensus regions thought to be highly conserved in class II promoters. These sequence differences also correspond to allelic differences in binding of nuclear proteins to the URR. Fragments of the URR of two DQB alleles were analyzed for binding to nuclear proteins extracted from human B lymphoblastoid cell lines (B-LCL). Gel retardation assays showed substantially different banding patterns to the two promoters, including prominent variation in nuclear protein binding to the partially conserved X box regions and a novel upstream polymorphic sequence element. Comparison of these two polymorphic alleles in a transient expression system demonstrated a marked difference in their promoter strengths determined by relative abilities to initiate transcription of the chloramphenicol acetyltransferase reporter gene in human B-LCL. Shuttling of URR sequences between alleles showed that functional variation corresponded to both the X box and upstream sequence polymorphic sites. These findings identify an important source of MHC class II diversity, and suggest the possibility that such regulatory region polymorphisms may confer allelic differences in expression, inducibility, and/or tissue specificity of class II molecules.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3