Endothelial-leukocyte adhesion molecule 1 stimulates the adhesive activity of leukocyte integrin CR3 (CD11b/CD18, Mac-1, alpha m beta 2) on human neutrophils.

Author:

Lo S K1,Lee S1,Ramos R A1,Lobb R1,Rosa M1,Chi-Rosso G1,Wright S D1

Affiliation:

1. Laboratory of Cellular Physiology and Immunology, Rockefeller University, New York, New York 10021.

Abstract

Two classes of adhesion molecules have well-defined roles in the attachment of unstimulated polymorphonuclear leukocytes (PMN) to cytokine-treated endothelial cells. Endothelial-leukocyte adhesion molecule 1 (ELAM-1) on endothelial cells interacts with specific carbohydrate residues on the PMN, and the leukocyte integrins (CD18 antigens) on PMN interact with intracellular adhesion molecule 1 and other structures on endothelium. Here we show that these two classes of molecules can act sequentially in an "adhesion cascade". Interaction of PMN with ELAM-1-bearing endothelial cells causes PMN to express enhanced adhesive activity of the integrin CR3 (CD11b/CD18). Expression of ELAM-1 on the cytokine-treated endothelium appears both necessary and sufficient for the stimulation of CR3 activity since blockade of ELAM-1 with mAbs prevents the activation of CR3 by cytokine-treated endothelium, and immobilized recombinant ELAM-1 activates CR3. The ability to activate CR3 is shared by chemattractants, suggesting that ELAM-1 may serve as a "tethered chemattractant." This hypothesis is strengthened by the observation that recombinant soluble ELAM-1 directs movement of PMN in chemotaxis chambers. These results suggest a mechanism by which multiple adhesive molecules may function together in diapedesis. ELAM-1 serves both as an adhesin and as a trigger that recruits the participation of additional adhesion molecules. Our results also suggest that ligands for adhesion molecules may also be "receptors" capable of generating intracellular signals.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3