Involvement of the K and I regions of the H-2 complex in resistance to hemopoietic allografts.

Author:

Drizlikh G,Schmidt-Sole J,Yankelevich B

Abstract

Irradiated (H-2b X H-2k)F1 and (H-2b X H-2d)F1 recipients strongly resist the growth of H-2b parental bone marrow cells and do not resist marrow grafts from non-H-2b parents such as C3H and BALB/c. This phenomenon of hybrid resistance has been shown to be under genetic control of the H-2D-linked loci and was interpreted by Cudkowicz (9) as due to the existence of H-2D-linked recessive hemopoietic histocompatibility genes. To check whether the H-2D-linked loci are solely responsible for the fate of bone marrow allografts, we measured the strength of resistance of irradiated (B6 X C3H)F1 and (B6 X BALB/c)F1 recipients toward bone marrow grafts from a set of H-2 recombinant and F1 hybrid donors carrying either the H-2b, H-2d, and H-2k alleles. We found that growth of all H-2b grafts was resisted, although to different degrees. Resistance was minimal when donors shared with the input strain of a corresponding F1 hybrid the H-2K and H-2I regions, or when both F1 donors and F1 recipients formed identical unique hybrid Ia molecules. In addition, H-2b grafts were resisted by congenic, H-2D-identical, H-2K-and H-2I-incompatible recipients. The fate of grafts from H-2Dd donors seemed to depend on the incompatibility of the combinatorial determinant Ia.22. If both donor and recipient expressed such a determinant (either in the cis or in the transposition), or if neither could form such a determinant, grafts were not resisted. The H-2Dk allele is not the main or only factor that confers on the C3H parental bone marrow cells the ability to grow unresisted in (B6 X C3H)F1 recipients. Grafts from congenic C3H.OH donors, carrying the same H-2Dk alleles and differing in the left part of the H-2 complex, were resisted by the F1 recipients. We conclude that both class I (K and D) and class II (I-A and I-E) major histocompatibility complex genes, rather than hypothetical hemopoietic histocompatibility genes control hemopoietic resistance. To reconcile codominant inheritance of classic H-2 antigens with the apparent recessive inheritance of hybrid resistance, we assume that there exist parental determinants that are not formed in some F1 hybrids due to preferential association of either Ia alpha chains with allogeneic beta chains or of class I antigens with allogeneic or hybrid class II restriction elements.

Publisher

Rockefeller University Press

Subject

Immunology,Immunology and Allergy

Cited by 24 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3