Induction Effects of Ritonavir: Implications for Drug Interactions

Author:

Foisy Michelle M1,Yakiwchuk Erin M2,Hughes Christine A3

Affiliation:

1. HIV Clinical Pharmacist, Northern Alberta HIV Program & Regional Pharmacy Services, Capital Health Authority, Edmonton, Alberta, Canada

2. Pharmacist, Regional Pharmacy Services, Capital Health Authority, Edmonton, Alberta

3. Faculty of Pharmacy & Pharmaceutical Sciences, University of Alberta; HIV Clinical Pharmacist, Northern Alberta HIV Program & Regional Pharmacy Services, Capital Health Authority, Edmonton, Alberta

Abstract

Objective: To review the literature on the induction effects of ritonavir on the cytochrome P450 enzyme system and glucuronyl transferase and identify resultant established and potential drug interactions. Data Sources: Primary literature was identified from MEDLINE (1950–April 2008), EMBASE (1988–April 2008) and International Pharmaceutical Abstracts (1970–April 2008) using the search terms ritonavir, cytochrome P450 enzyme system, enzyme induction, glucuronyl transferase, and drug interactions. Additionally, relevant conference abstracts and references of relevant articles were reviewed. Study Selection and Data Abstraction: All English-language articles and abstracts identified were reviewed. Data Synthesis: Ritonavir is a well-known inhibitor of the metabolism of numerous medications that are substrates of the CYP3A and CYP2D6 pathways. It also exhibits a biphasic, time-dependent effect on P-glycoprotein of inhibition followed by induction. Numerous pharmacokinetic studies suggested that ritonavir induces cytochrome P450 enzymes 3A, 1A2, 2B6, 2C9, and 2C19, as well as glucuronyl transferase. Additionally, several case reports described clinically significant subtherapeutic effects of drugs metabolized by these isoenzymes when coadministered with ritonavir. Both therapeutic and boosting doses of ritonavir appear to induce these enzymes: however, most of the studies of low-dose ritonavir involved a second protease inhibitor such as lopinavir, darunavir, or tipranavir. It is, therefore, difficult to distinguish the relative effects of additional medications unless well-designed, 3-way studies are conducted. Conclusions: At both therapeutic and boosting doses, ritonavir exhibits a clinically relevant induction effect on numerous drug-metabolizing enzymes. A decrease or loss of therapeutic effect may be observed when ritonavir is coadministered with medications that are substrates for these enzymes. It is important for clinicians to be aware of drugs potentially impacted by ritonavir therapy to Identify and manage these interactions.

Publisher

SAGE Publications

Subject

Pharmacology (medical)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3