Quantitative Imaging Analysis Fluorescence In Situ Hybridization Validation for Clinical HER2 Testing in Breast Cancer

Author:

Wilcock Diane M.1,Moore Kristina H.1,Rowe Leslie1,Mahlow Jonathan12,Jedrzkiewicz Jolanta12,Cleary Allison S.12,Lomo Lesley12,Ruano Ana L.12,Gering Maarika1,Bradshaw Derek1,Maughan Meghan1,Tran Phuong1,Burlingame Jesse1,Davis Richard1,Affolter Kajsa12,Albertson Daniel J.12,Adelhardt Parisa12,Kim Jong Take12,Coleman Joshua F.12,Deftereos Georgios12,Gulbahce Evin H.12,Sirohi Deepika12

Affiliation:

1. From the Institute for Experimental Pathology, ARUP Laboratories, Salt Lake City, Utah (Wilcock, Moore, Rowe, Mahlow, Jedrzkiewicz, Cleary, Lomo, Ruano, Gering, Bradshaw, Maughan, Tran, Burlingame, Davis, Affolter, Albertson, Adelhardt, Kim, Coleman, Deftereos, Gulbahce, Sirohi)

2. The Department of Pathology, University of Utah and ARUP Laboratories, Salt Lake City (Mahlow, Jedrzkiewicz, Cleary, Lomo, Ruano, Affolter, Albertson, Adelhardt, Kim, Coleman, Deftereos, Gulbahce, Sirohi).

Abstract

Context.— Quantitative imaging is a promising tool that is gaining wide use across several areas of pathology. Although there has been increasing adoption of morphologic and immunohistochemical analysis, the adoption of evaluation of fluorescence in situ hybridization (FISH) on formalin-fixed, paraffin-embedded tissue has been limited because of complexity and lack of practice guidelines. Objective.— To perform human epidermal growth factor receptor 2 (HER2) FISH validation in breast carcinoma in accordance with the American Society of Clinical Oncology/College of American Pathologists (ASCO/CAP) 2018 guideline. Design.— Clinical validation of HER2 FISH was performed using the US Food and Drug Administration–approved dual-probe HER2 IQFISH (Dako, Carpinteria, California) with digital scanning performed on a PathFusion (Applied Spectral Imaging, Carlsbad, California) system. Validation parameters evaluated included z-stacking, classifier, accuracy, precision, software, and hardware settings. Finally, we evaluated the performance of digital enumeration on clinical samples in a real-world setting. Results.— The accuracy samples showed a final concordance of 95.3% to 100% across HER2 groups 1 to 5. During clinical implementation for HER2 groups 2, 3, and 4, we achieved a final concordance of 76% (95 of 125). Of these cases, only 8% (10 of 125) had discordances with clinical impact that could be identified algorithmically and triaged for manual review. Conclusions.— Digital FISH enumeration is a useful tool to improve the efficacy of HER2 FISH enumeration and capture genetic heterogeneity across HER2 signals. Excluding cases with high background or poor image quality and manual review of cases with ASCO/CAP group discordances can further improve the efficiency of digital HER2 FISH enumeration.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3