Smart Glasses as a Surgical Pathology Grossing Tool

Author:

Kulak Ozlem1,Drobysheva Anastasia2,Wick Neda1,Arvisais-Anhalt Simone1,Germans Sharon Koorse1,Timmons Charles F.1,Park Jason Y.1

Affiliation:

1. Department of Pathology, University of Texas Southwestern Medical Center, Dallas (Kulak, Wick, Arvisais-Anhalt, Germans, Timmons, Park). Kulak and Drobysheva contributed equally to this work.

2. From the Department of Pathology, Boston Children's Hospital, Boston, Massachusetts (Drobysheva)

Abstract

Context.— Smart glasses are a wearable technology that enable hands-free data acquisition and entry. Objective.— To develop a surgical pathology grossing application on a smart glass platform. Design.— An existing logistics software for the Google Glass Enterprise smart glass platform was used to create surgical pathology grossing protocols. The 2 grossing protocols were developed to simulate grossing a complex (heart) and a simple (kidney) specimen. For both protocols, users were visually prompted by the smart glass device to perform each task, record measurements, or document the field of view. In addition to measuring the total time of the protocol performance, each substep within the protocol was automatically recorded. Subsequently, a report was generated that contained the dictation, images, voice recordings, and the timing of each step. The application was tested by 3 users using the 2 grossing protocols. The users were tracked across 3 grossing procedures for each protocol. Results.— For the complex specimen grossing the average time across repeated procedures was not significantly different between users (P > .99). However, when grossing times of the complex specimen were compared for repeated performances of the same user, a significant reduction in grossing times was observed with each repetition (P = .002). For the simple specimen, the average grossing time across multiple attempts was different among users (P = .03); however, no improvement in grossing time was observed with repeated performance (P = .499). Conclusions.— Augmented reality based grossing applications can provide automated data collection to track the changes in grossing performance over time.

Publisher

Archives of Pathology and Laboratory Medicine

Subject

Medical Laboratory Technology,General Medicine,Pathology and Forensic Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3