Affiliation:
1. JSC «ETC «GET». Moscow, Russia
2. Lomonosov Moscow State University. Moscow, Russia
Abstract
At present, to describe the two-velocity flow of a dispersed mixture, as a rule, a two-fluid model is used with equal pressure of the phases of the medium and different velocities of the phases. The corresponding system of equations without special, postulated, stabilizing terms is non-hyperbolic. This can lead to difficulties in finding a solution.
Recently, it has been proposed to use similar models more widely, but with different pressures of the phases of the medium. Such models allow one to take into account new physical effects associated with different phase pressures and often provide hyperbolicity of the corresponding system of equations. This article analyzes the influence of the difference in the pressure of the phases of the medium on the properties of the system: the importance of the corresponding new effects, the hyperbolicity of the system of equations, the stability of its stationary solutions, and the correctness of the corresponding Cauchy problem are investigated. Three systems are considered. The first, simplest model system is based on the well-known non-hyperbolic system, which has been modernized. It is shown that the Cauchy problem for the modified system is formally correct, but the practical possibility of using the calculation results obtained from the solution of this system should be investigated in each specific case, and depends on the calculated step and duration of the process under study. The techniques worked out to solve the first simplest system were used for other systems. As the second system, a model of the flow of a two-phase medium with different phase pressures and two momentum equations is considered. We will assume the phases are barotropic. Let us postulate an equation relating the pressure in the phases. It is proved that this system is always hyperbolic. The stability of its stationary solutions is investigated. Relationships are derived that make it possible to determine under what conditions, due to instability, the obtained solutions are unreliable. The properties of this system are compared with the system of two-speed flow of a dispersed mixture with equal pressure of the phases of the medium. As a third system, a two-pressure model describing bubble pulsations is considered. We will assume the phases are barotropic. Conditions are determined when the system is non-hyperbolic and the Cauchy problem is incorrect. It is investigated for what conditions the ill-posedness of the Cauchy problem leads to the unreliability of the solution, and under what conditions the ill-posedness of the Cauchy problem does not lead to the unreliability of the solution.
Publisher
Keldysh Institute of Applied Mathematics
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献