Flow stability and correctness of the Cauchy problem for a two-speed medium model with different phase pressures

Author:

Kroshilin Alexander Evgenievich1ORCID,Kroshilin Mikhail Evgenievich2ORCID

Affiliation:

1. JSC «ETC «GET». Moscow, Russia

2. Lomonosov Moscow State University. Moscow, Russia

Abstract

At present, to describe the two-velocity flow of a dispersed mixture, as a rule, a two-fluid model is used with equal pressure of the phases of the medium and different velocities of the phases. The corresponding system of equations without special, postulated, stabilizing terms is non-hyperbolic. This can lead to difficulties in finding a solution. Recently, it has been proposed to use similar models more widely, but with different pressures of the phases of the medium. Such models allow one to take into account new physical effects associated with different phase pressures and often provide hyperbolicity of the corresponding system of equations. This article analyzes the influence of the difference in the pressure of the phases of the medium on the properties of the system: the importance of the corresponding new effects, the hyperbolicity of the system of equations, the stability of its stationary solutions, and the correctness of the corresponding Cauchy problem are investigated. Three systems are considered. The first, simplest model system is based on the well-known non-hyperbolic system, which has been modernized. It is shown that the Cauchy problem for the modified system is formally correct, but the practical possibility of using the calculation results obtained from the solution of this system should be investigated in each specific case, and depends on the calculated step and duration of the process under study. The techniques worked out to solve the first simplest system were used for other systems. As the second system, a model of the flow of a two-phase medium with different phase pressures and two momentum equations is considered. We will assume the phases are barotropic. Let us postulate an equation relating the pressure in the phases. It is proved that this system is always hyperbolic. The stability of its stationary solutions is investigated. Relationships are derived that make it possible to determine under what conditions, due to instability, the obtained solutions are unreliable. The properties of this system are compared with the system of two-speed flow of a dispersed mixture with equal pressure of the phases of the medium. As a third system, a two-pressure model describing bubble pulsations is considered. We will assume the phases are barotropic. Conditions are determined when the system is non-hyperbolic and the Cauchy problem is incorrect. It is investigated for what conditions the ill-posedness of the Cauchy problem leads to the unreliability of the solution, and under what conditions the ill-posedness of the Cauchy problem does not lead to the unreliability of the solution.

Publisher

Keldysh Institute of Applied Mathematics

Subject

General Medicine

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3