Ranking of objects based on fuzzy clustering

Author:

Badanina Natalya DmitriyevnaORCID,Zinchenko Aleksandra AndreevnaORCID,Sudakov Vladimir AnatolievichORCID

Abstract

The paper creates a method for using fuzzy logic in the task of dividing objects into clusters and ranking them, where their coordinates are indicated as features. Classical machine learning approaches for making clustering models are investigated. Further, they are supplemented with the fuzzy numbers apparatus to obtain an estimate of the potential possibility of an object belonging to a cluster. Based on the selected approaches, algorithmic and software were developed for assigning an object to clusters with the derivation of the membership function, as well as the derivation of the rank calculated through defuzzification, taking into account the importance of each cluster. The resulting model can be used to solve the problems of selecting and ranking objects, taking into account the degree of confidence in their belonging to certain classes.

Publisher

Keldysh Institute of Applied Mathematics

Subject

General Medicine

Reference11 articles.

1. Лапин А.Л., Стрехнин А.И. Нечеткая кластеризация измерительных преобразователей давления // Вестник ЮУрГУ. Серия: Компьютерные технологии, управление, радиоэлектроника. 2011. №23 (240).

2. Gao X., Xie W. Advances in theory and applications of fuzzy clustering // Chinese Science Bulletin. 2000. № 11.

3. Баданина Н.Д., Судаков В.А. Модели машинного обучения для классификации отзывов о банках // Препринты ИПМ им. М.В. Келдыша. 2021. № 50. 14 с. https://doi.org/10.20948/prepr-2021-50 URL: https://library.keldysh.ru/preprint.asp?id=2021-50

4. Dibya J.B., Kumar A.G. A Comparative Study Between Fuzzy Clustering Algorithm and Hard Clustering Algorithm // IJCTT. 2014. №10 (108-113).

5. Бротиковская Д., Зобнин Д. Алгоритм k средних (k-means). URL: https://algowiki-project.org/ru/Алгоритм_k_средних_(k-means).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3