Author:
Molcan M.,Safarik I.,Pospiskova K.,Paulovicova K.,Timko M.,Kopcansky P.,Torma N.
Abstract
Several methodologies for the preparation of nanofibrous materials exist. Electrospinning is currently the most popular technique due to its versatility and simplicity. Nanofibrous materials prepared in such a way are widely studied in medicine and material engineering. Polyvinyl butyral (PVB) nanofibers were generated by a rod-shaped spinning-electrode. Nanofibers were modified by a magnetic fluid (MF) added into the PVB solution. These magnetic nanofibers can be considered as a material for magnetic hyperthermia applications, either as implants or for the surface heating. The samples with various magnetic particle concentrations were tested in the alternating magnetic field. An immediate increase in the temperature after the field application was observed. The nature of the temperature rise is interesting: a non-linear increase could be seen, which is in contrast to the rising temperature for pure magnetic fluids.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)
Subject
General Physics and Astronomy
Reference32 articles.
1. I. Savva, T. Krasia-Christoforou. Electrospun magnetoactive fibrous nanocomposites: Fabrication and applications in biomedicine. In: Magnetic Nanoparticles: Synthesis, Physicochemical Properties and Role in Biomedicine. Edited by N.P. Sabba. (Nova Science Publishers, 2014) [ISBN: 978-1-63117-434-6].
2. T. Blachowicz, A. Ehrmann. Most recent developments in electrospun magnetic nanofibers: A review. J. Eng. Fibers Fabr. 15, in press (2020).
3. O.V. Tomchuk, L.A. Bulavin, V.L. Aksenov, M.V. Avdeev. Small-angle scattering in structural research of nanodiamond dispersions. In: Modern Problems of the Physics of Liquid Systems. Edited by L.A. Bulavin, L. Xu (Springer, 2019) [ISBN: 978-3-030-21754-9].
4. A.V. Nagornyi, M.V. Avdeev, O.V. Yelenich, S.O. Solopan, A.G. Belous, A.V. Shulenina, V.A. Turchenko, D.V. Soloviov, L.A. Bulavin, V.L. Aksenov. Structural aspects of Fe3O4/CoFe2O4 magnetic nanoparticles according to X-ray and neutron scattering. J. Surf. Invest.-X-Ray+ 12, 737 (2018).
5. A. Nagornyi, L. Bulavin, V. Petrenko, M. Avdeev, V. Aksenov. Sensitivity of small-angle neutron scattering method at determining the structural parameters in magnetic fluids with low magnetite concentrations. Ukr. J. Phys. 58, 735 (2013).
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献