Author:
Bar’yakhtar V. G.,Danilevich A. G.
Abstract
A general method for constructing a model of the dissipative function describing the relaxation processes induced by the damping of coupled magnetoacoustic waves in magnetically ordered materials has been developed. The obtained model is based on the symmetry of the magnet and describes both exchange and relativistic interactions in the crystal. The model accounts for the contributions of both the magnetic and elastic subsystems to the dissipation, as well asthe relaxation associated with the magnetoelastic interaction. The dispersion law for coupled magnetoelastic waves is calculated in the case of a uniaxial ferromagnet of the “easy axis” type. It is shown that the contribution of the magnetoelastic interaction to dissipative processes can play a significant role in the case of magnetoacoustic resonance.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)
Subject
General Physics and Astronomy
Reference28 articles.
1. C. Kittel. Interaction of spin waves and ultrasonic waves in ferromagnetic crystals. Phys. Rev. 110, 836 (1958).
2. A.I. Akhiezer, V.G. Bar'yakhtar, S.V. Peletminskii. Coupled magnetoelastic waves in ferromagnetic media and ferroacoustic resonance. JETP 8, 157 (1959).
3. A.I. Akhiezer, V.G. Bar'yakhtar, S.V. Peletminskii. Spin Waves (North Holland, 1968).
4. V.G. Bar'yakhtar, E.A. Turov. Magnetoelastic excitations. In Spin Waves and Magnetic Excitations. Edited by A.S. Borovik-Romanov, S.K. Sinha (North Holland, 1988), Pt. 2, p. 333.
5. V.G. Bar'yakhtar, A.G. Danilevich. Magnetoelastic waves in ferromagnets in the vicinity of lattice structural phase transitions. Ukr. J. Phys. 63, 836 (2018).