Modern ideas about the micronhomogeneous structure of metal melts (overview)

Author:

Verkhovliuk A.ORCID, ,Scheretsky O.

Abstract

The review examines the question of modern ideas about the structure of metal melts in a wide temperature-concentration interval. The existing theories and models of their micro-inhomogeneous structure, namely quasi-chemical, cluster, and colloid, are presented. The quasi-chemical theory takes into account the arrangement of atoms in a metallic liquid, i.e., it is believed that the probability of atoms of the 1st and 2nd grade in one of the two neighboring places is different. It is based on comparing the probabilities of different ways of filling neighboring places. A cluster is a microgrouping of atoms that preserve a certain close-range order in their mutual arrangement and which are united by a general oscillatory movement of the entire grouping and at the same time half connected at any moment with the entire mass of matter in a given volume. Elements of disorder in this model of metal melts are introduced by the movement of activated atoms, thermal fluctuations, and diffusion displacements of clusters, which are associated with the movement of clusters, periodic formations and closing of intercluster gaps, and relaxation displacements of atoms in the middle of clusters, which are associated with thermal fluctuations. The colloidal model was formulated to explain the micro-heterogeneity of eutectic systems. According to this theory, the microheterogeneity observed after melting the sample is due to the long-term existence of microregions in the melt, which are a legacy of the chemically inhomogeneous initial casting, which is enriched with various components. These regions are considered as dispersed particles and the melt is considered as a microheterogeneous system consisting of dispersed and dispersed phases. The microheterogeneous state of the melt was distinguished by the presence of an interfacial surface that separates the inclusion from the main melt. The work also presents results that confirm the fact that amorphous alloys are structurally microinhomogeneous. Since these systems are formed at cooling rates of the initial melt of about 106 0C/s, their micro-heterogeneity is associated with the structure of liquid metal solutions. Keywords: micro-heterogeneity, metal melt, models, amorphous alloys.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Reference37 articles.

1. 1. Френкель Я. И. Кинетическая теория жидкостей. М.: Наука, 1976. 592 с.

2. 2. Баум Б. А. Металличекие жидкости. М.: Наука, 1979. 120 с.

3. 3. Вилсон Д. Р. Структура жидких металлов и сплавов. М.: Металлургия, 1972. 247 с.

4. 4. Арсеньтьев П. П., Коледов Л. А. Металлические расплавы и их свойства. М.: Металлургия, 1976. 376 с.

5. 5. Еланский Г. Н., Еланский Д. Г. Строение и свойства металлических расплавов. М.:МГВМИ, 2006. 228 с.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3