Embedded atoms in a crystalline hexagonal structure

Author:

Matysina Z. A., ,Zolotarenko An. D.,Zolotarenko Ol. D.,Myronenko T. V.,Schur D. V.,Rudakova E. P.,Chymbai M. V.,Zolotarenko A. D.,Zagorulko I. V.,Havryliuk O. O., , , , , , , , ,

Abstract

As part of the work, the hexagonal structure of B19 type metals as hydrogen sorbents will be considered. That is, crystal lattices are considered, where atoms of impurities (hydrogen) are introduced into the interstices of the metal. To do this, we present an image of the B19 structure itself. In this work, the solubility of hydrogen in the crystal structure of B19 type metals was studied using the configuration method, and the dependence on the composition of the alloy and temperature was found in the substitution of nodes and interstices. Also, in the work the degrees of long-range order at the nodes are considered and the parameters of the correlation in the substitution are determined. A graphical view of the effect of atomic order on the solubility of impurities is given. The calculated data obtained in the work coincide with the experimental data of other studies, and the obtained calculation formulas make it possible to determine the energy parameters of the alloys, which is a certain scientific value of the work. The proposed system takes into account only atomic interaction and absorption (dissolution) and diffusion of interstitial atoms into the bulk of the crystal structure; therefore, it is possible to predict the introduction of only a hydrogen atom. Thus, the results obtained in the work of the correlation parameters for the distribution of atoms only in octapores or only in tetrapores allow a deeper study of the physical characteristics of alloys of the B19 type and an understanding of the processes of hydrogen sorption by the working bodies of hydrogen storage.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Paraelectric–Ferroelectric Phase Transformations in Nanodispersed Powders of KDP Crystals;Nanosistemi, Nanomateriali, Nanotehnologii;2024-06

2. Physicochemical Processes of Electroarc Synthesis of Carbon Nanomaterials;Nanosistemi, Nanomateriali, Nanotehnologii;2024-06

3. Hydrogen in Compounds and Alloys with A15 Structure;Progress in Physics of Metals;2023-12

4. Modern Fillers of Metal and Polymer Matrices;Progress in Physics of Metals;2023-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3