Models of space object motion based on time series of TLE-elements

Author:

Sarychev O.P., ,Perviy B.A.,

Abstract

Timely detection of changes in the characteristics of space hardware objects during their long-term operation is one of the main tasks in the development and study of onboard systems that maintain the efficiency of their operation. This paper presents a statistical method for simulating the motion of space objects (spacecraft and used launch vehicle stages) in the class of autoregressive models. The method allows one to improve the quality of description and prediction of the motion of space objects based on simulating time series of their TLE-elements (two-line orbital element sets). The purpose of this work is to increase the accuracy of mathematical models of the observed motion of space objects in the problems of deorbit time determination, satellite collision prediction, and space debris cataloging. The paper presents a system for simulating the motion of space objects, which allows one to determine an optimal amount of learning samples in simulating time series of TLE elements, determine the order of autoregression and find an optimal model structure for each variable element, identify model parameters in conditions of unequally spaced observations, identify features of the time behavior of the root-mean-square errors of the constructed autoregressive models on the basis of dividing the initial time series of TLE-elements into successive learning intervals, and obtain predictive estimates of the values of variable elements. The proposed statistical method of space object motion simulation can be recommended to describe and predict the motion of spacecraft and used launch vehicle stages represented as time series of TLE-elements (which are publicly available and regularly updated). The application of the proposed statistical method will increase the accuracy of mathematical models of the observed motion of space objects in the problems of deorbit time determination, satellite collision prediction, and space debris cataloging.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3