Abstract
Вступ. Пошук технічних рішень зі створення ефективних детекторів α- та β-випромінень є світовою тенденцією в галузі радіаційного контролю.Проблематика. Поліпшити характеристики детекторів α- та β-частинок можна через використання матеріалів зоптимізованими параметрами, оригінальні конструкції та технологічні прийоми.Мета. Розробка та створення технологічних основ виготовлення сцинтиляційних детекторів на основі активованого селеніду цинку ZnSe(Al) та пластмасового сцинтилятору (ПС) полістиролу типу UPS-923A для реєстрації α-, β- й α-β-випромінень.Матеріали й методи. Використано кристал ZnSe(Al), ПС типу UPS-923A на основі полістиролу, поліметилметакрілат (ПММА); застосовано гаряче пресування, тестування параметрів детекторів при опроміненні α- та β-частками методами спектрометрії та спектрофотометрії.Результати. Відпрацьовано технологічні режими виготовлення: α-детектору на основі тонкого шару дрібнокристалічного сцинтилятору ZnSe(Al), нанесеного на пластину ПММА, що працює у лічильному режимі реєстрації (чутливість > 0,15 імпульс ⋅ с–1/Бк (імп · с–1/Бк) (239Pu)); пластин ПС полістиролу типу UPS-923A заданої товщини й площі методом гарячого пресування та β-детекторів на їх основі, що працюють у лічильному режимі реєстрації (чутливість > 0,28 імп · с–1/Бк (90Sr-90Y)); α-β-детектору на основі тонкого шару дрібнокристалічного ZnSe(Al), нанесеного на пластинуПС полістиролу типу UPS-923A, що працює у лічильному режимі реєстрації (чутливість >0,15 імп · с–1/Бк (239Pu)та >0,28 імп · с–1/Бк (90Sr-90Y)); α-β-детектору з використанням тонкої монокристалічної пластини сцинтилятору ZnSe(Al) оптично з’єднаної з пластиною ПММА, що працює в спектрометричному режимі реєстрації (детектор одночасно реєструє α- та β- частки з розділенням спектрів з α/β > 0,85, чутливість > 0,3 імп · с–1/Бк (239Pu) та > 0,28 імп · с–1/Бк (90Sr-90Y)).Висновки. Розробки детекторів відповідають рівню світових аналогів та забезпечують реєстрацію сигналу як в лічильному, так і у спектрометричному режимі.
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)
Subject
Law,Management of Technology and Innovation,Information Systems and Management,Computer Science Applications,Engineering (miscellaneous)
Reference33 articles.
1. ZnS(Ag) Zinc Sulfide Scintillation Material. © 2002 Saint-Gobain Ceramics and Plastics, Inc. URL: http://www.hep. ph.ic.ac.uk/fets/pepperpot/docs+papers/zns_602.pdf (Last accessed: 01.11.2022).
2. Patent of USA № US7679064B2. Particle detector and neutron detector that use zinc sulfide phosphors. Katagiri M. URL: https://patents.google.com/patent/US7679064 (Last accessed: 01.11.2022).
3. Lee, S. K., Kang, S. Ya., Jang, D. Yu., Lee, Ch. H., Kang, S. M., …, Kim, Y. K. (2011). Comparison of new simple methods in fabricating ZnS(Ag) scintillators for detecting alpha particles. Progress in Nuclear Science and Technology, 1, 194-197. https://doi.org/10.15669/pnst.1.194.
4. Morozova, N. K., Kuznetsov, V. A. (1987). Zinc sulfide: preparation and optical properties (Eds. M. V. Fok). Moscow [in Russian].
5. Foster, J. (2006). A comparison of the ZnS(Ag) scintillation detector to the silicon semiconductor detector for quantification of alpha radioactivity in aqueous solutions. All Theses. Clemson University: TigerPrints. URL: https://tigerprints.clemson.edu/all_theses/10 (Last accessed: 01.11.2022).