Sm3+-Doped Molybdenum Gadolinium Borate Glasses for Orange Emission Laser Active Medium

Author:

Rajaramakrishna R.,Ruangtawee Y.,Kaewkhao J.

Abstract

Room temperature visible and near infrared optical absorption and emission spectra of Sm3+-doped molybdenum gadolinium borate (MGB) glasses with molar composition 25MoO3-20Gd2O3–(55 − x)B2O3−xSm2O3 (x = 0.05, 0.1, 0.5, 1.0, 2.0 mol.%) have been analyzed. The experimental oscillator strengths of absorption bands have been used to determine the Judd–Ofelt (J–O) parameters. Fluorescence spectra were recorded by exciting the samples at 402 nm. Using the J–O parameters and luminescence data, the radiative transition probabilities (AR), branching ratios (BR), and stimulated emission cross-sections oe) are obtained. The decay curves of the 4G5/2 - 6H7/2 transition exhibit a non-exponential curve fit for all concen-trations. The concentration quenching has been attributed to the energy transfer through the cross-relaxation between Sm3+ ions. 4G5/2 level and its relative quantum efficiencies are measured. Intense reddish-orange emission corresponding to the 4G5/2−6H7/2 transition has been observed in these glasses at the 487-nm excitation, From the values of the radiative parameters, it is concluded that the 1.0-mol% Sm3+-doped MGB glass may be used as a laser active medium with the emission wavelength at 599 nm. The analysis of the non-exponential behavior of decay curves through the Inokuti–Hirayama model indicates that the energy transfer between Sm3+ ions is of dipole–dipole type. The quantum efficiency for the 4G5/2 level of MGBSm10 glass is found to be 67%. The co-related color temperature obtained from CIE (Commission International de L’Eclairage) for these glass samples is ∼1620 K for the indicated orange emission at the 402-nm excitation.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

General Physics and Astronomy

Reference55 articles.

1. 1. R.G. Gossink. Thesis, Eindhoven O971. Philips Res. Rep. Suppl. No. 3. (1971).

2. Glass formation and structure in the system MoO3–Bi2O3–Fe2O3.;Iodanova;J Non-Cryst Solids,1998

3. Glass formation and microheterogeneous structure in the system B2O3–V2O5–MoO3.;Dimitriev;Phys Chem Glasses,2003

4. Glass formation in the MoO3Bi2O3–PbO system.;Milanova;J Mater Sci Lett,2004

5. Dielectric dispersion in the PbO–MoO3–B2O3 glass system.;Syam Prasad;Solid State Commun,2004

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3