Author:
Gutlyanskii V.Ya., ,Nesmelova O.V.,Ryazanov V.I., ,
Publisher
National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)
Reference12 articles.
1. 1. Ahlfors, L. V. (1966). Lectures on quasiconformal mappings. Princeton, N.J.: Van Nostrand.
2. 2. Astala, K., Iwaniec, T. & Martin, G. (2009). Elliptic partial differential equations and quasiconformal mappings in the plane. Princeton Mathematical Series. (Vol. 48). Princeton, NJ: Princeton University Press.
3. Asymptotic behavior of solutions and their derivatives, for semilinear elliptic problems with blowup on the boundary;Bandle;Ann Inst H Poincaré Anal Non Lineaire 12 No 2,1995
4. 4. Bojarski, B., Gutlyanskii, V., Martio, O. & Ryazanov, V. (2013). Infinitesimal geometry of quasiconformal and bilipschitz mappings in the plane. EMS Tracts in Mathematics. (Vol. 19). Zurich: European Mathematical Society.
5. 5. Gutlyanskii, V., Ryazanov, V., Srebro, U. & Yakubov, E. (2012). The Beltrami Equation: A Geometric Approach. Developments in Mathematics. (Vol. 26). New York: Springer.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献