Water deficiency tolerance of genetically modified common wheat cv. Zymoyarka, containing a heterologous ornithine-δ-aminotransferase gene

Author:

Dubrovna O.,Priadkina G.,Mykhalska S.,Komisarenko A.

Abstract

Aim. To determine water deficiency tolerance of genetically modified common wheat plants (Triticum aestivum L., cv Zymoyarka), containing the heterologous ornithine-δ-aminotransferase gene, based on the analysis of grain productivity and physiological and biochemical characteristics in transgenic and non-transgenic genotypes. Methods. Biochemical spectrophotometric assays: the enzyme ornithine-δ-aminotransferase activity, the free L-proline content, and the photosynthetic pigments content; biotechnological: Agrobacterium-mediated transformation in planta; physiological: morphometric traits and elements of grain productivity; mathematical statistics. Results. It was established that the presence of an additional copy of the ornithine-δ-aminotransferase gene in transgenic plants leads to higher activity of the ornithine-δ- aminotransferase enzyme: by 1.6 times higher on average for all lines as compared to the non-transgenic plants at 70 % of fi eld capacity and by 1.5 – at 30 % fi eld capacity. However, transgenic plants did not differ significantly from the original variety in the free L-proline content either under optimal water conditions or under soil drought. The increase in the total chlorophyll (a + b) content in flag leaves of transgenic plants was established under conditions of both optimal water supply and drought, as compared with the original genotype (increase by 5–7 % and 8–11 %, respectively). The enhanced expression of the orni- thine-δ-aminotransferase gene in the transgenic plants stimulated root growth both under optimal and stressful conditions: the root length of the transformed plants exceeded that of the original variety by 3.4–3.9 cm in the variant with optimal water supply, and by 4.2–4.6 cm – under drought. They were also characterized by a more developed root system. Dry root weight of the transgenic plants exceeded the original variety both in the control (by 23–27 %), and under drought (by 37– 44 %). Under drought, the root dry weight decreased by 29 % in the plants of the original variety, compared 70 % fi eld capacity, and by 11–15 % in the lines. Under 30 % field capacity, the transgenic lines also exceeded non-transformed plants in the number of grains from the whole plant (on average for 3 lines by 26 %) and in the grain weight (by 22 %). Transgenic plants are characterized by the formation of a higher productive shoots number: from 3.2 to 3.4 compared with 2.5 in non-transgenic plants at 70 % fi eld capacity and 2.7–3.1 vs 2.2 at 30 % field capacity it was found. Conclusions. Thus, the analysis of genetically modified common wheat plants cv. Zymoyarka, containing the heterologous alfalfa ornithine-δ- aminotransferase gene, by yield structure elements, morphometric parameters and photosynthetic pigment content showed their better tolerance to soil drought as compared to non-transgenic plants. We explain the improvement of grain productivity of the whole plant in transgenic wheat lines with an additional copy of ornithine-δ-aminotransferase gene by the fact that they have a better developed root system (dry root weight of the transgenic plants exceeded the original variety both in the control by 23–27 %, and under drought by 37–44 %) and a higher (on average for 3 lines – 3.3 compared to 2.5 in non- transgenic plants at 70 % fi eld capacity and 2.9 vs 2.2 at 30 % fi eld capacity) number of productive shoots than in the origi- nal variety both under optimal and insuffi cient water supply.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3