EPR study of interlayer interaction in Gd2O3/Fe nanostructure

Author:

Kasumov A. M., ,Dmitriev A. I.,Bataiev Yu. M.,Bataiev M. M.,Karavaeva V. M.,Korotkov K. A.,Ievtushenko A. I., , , , , ,

Abstract

In this work, a nanoscale structure consisting of contacting layers of a metal of the iron subgroup and a rare earth metal oxide (REM) is considered. Such nanostructures have an interesting feature, which is that as a result of the contact of these layers, an increase in the galvanomagnetic, magneto-optical and kinetic properties of ferromagnetic metals are observed. Presumably, the enhancement is due to an increase in the magnetization of these metals, caused by the exchange f - d interaction between the unfilled f- and d-electron shells of the atoms that make up the contacting layers. The aim of this work is to find the possibility of such f - d exchange interaction by the EPR method. To compose the studied nanostructure, Fe used as it has the strongest magnetic properties in its subgroup. Gd2O3 was used as an REM oxide as one of the few oxides giving a significant signal in the EPR region. The Gd2O3/Fe nanostructure created by sequential electron-beam deposition of Gd2O3 and Fe layers on a sitall substrate. The thickness of the oxide and metal layers was 68 and 112 nm, respectively. EPR spectra were recorded at room temperature on a computerized spectrometer Radiopan 2547 SE / X at the frequency of 9.3 GHz. The set of the obtained spectra was processed using the OriginPro and MatLab programs, which confirmed their compliance with the Lorentz model. From the experimentally obtained EPR linewidth, the parameter of the exchange f - d interaction is determined under the condition of a number of assumptions. The value of the g-factor is also found. Comparison of the EPR parameters of the spectra of individual layers of Gd2O3 and Fe with the spectra of the Gd2O3/Fe nanostructure composed of them, including the value of the g factor and the exchange interaction parameter, suggests that the presence of an iron layer affects the EPR spectrum of the REM oxide layer Gd2O3. The exchange interaction parameter increases from 985 to 4685 (rel. units), the g-factor decreases from 3.5 to 2.4. The most probable reason for the change in the spectrum is the exchange f - d interaction between atoms with unfilled f- and d-electron shells that are parts of the contacting layers.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3