Peculiarities of synthesis and bactericidal properties of nanosilver in colloidal solutions, SiO2 films and in the textile structure: a review

Author:

Eremenko A. M., ,Petryk I. S.,Mukha Y. P.,Vityuk N. V.,Smirnova N. P.,Rudenko A. D., , , , ,

Abstract

The aim of this work is a comparative analysis of the biocidal efficiency of Ag nanoparticles (NPs) in the colloidal state, in the structure of films and dispersions of SiO2 and in the composition of textile fabrics, dependent on the method of synthesis, based on literature data and on own researches. Chemical reduction of silver (with borohydrides, hydrogen, hydrazine, etc.) allows one to adjust and control the size and shape of NPs. The shape of the NPs is mostly spherical, what is confirmed by the presence of a band of surface plasmon resonance in absorption spectra and by electron microscopy measurements. To prevent aggregation of NPs obtained by the method of chemical reduction in solution, the optimal ratio of two stabilizers based on surfactants and polymer at their minimum concentration was found, namely NaBH4 as a reductant and polyvinylpyrrolidone + sodium dodecyl sulfate as binary stabilizer of Ag NPs, with bactericidal activity of 99 % and stability for more than 3 years. Chemical reduction of silver ions was carried out also by the amino acid tryptophan (Trp) which has a dual function – a biocompatible reducing agent and stabilizer of silver NPs while maintaining their shape, size and stability for long-term use. Effective methods of photochemical synthesis of Ag NPs have been developed in different ways: by UV irradiation of Ag+ ions in solution in the presence of solid-state photosensitizer SiO2 with adsorbed benzophenone (SiO2/BPh); by UV irradiation of Ag+ ions in solution in the presence of the amino acid tryptophan (Trp); on silica surface when Ag/SiO2 sol-gel films production via irradiation of adsorbed Ag+ ions on SiO2 film (Ag+/SiO2) in the BPh solution. It is shown that when Ag NPs are adsorbed on the surface of highly dispersed SiO2, the logarithm of the reduction of microorganisms reduces and the time of their deactivation increases. A cheap and convenient way to modify of cotton textiles with Ag NPs by soft heat treatment of Ag+/cotton samples with high (90–95 %) efficiency of destruction of bacteria E. coli, K. pneumoniae, E. aerogenes, P. vulgaris, S. aureus, C. albicans, etc., with saving of biocidal activity after 5 cycles of washing has been developed. The dynamics of silver ions release from the surface of NPs in the structure of textile upon their contact with water for 72 hours and the number of irreversibly bound particles have been studied. The electrical resistance of the tissue is proportional to the quantity of NPs. That is NPs in the structure are in different degrees of binding, a certain part of them is retained (adsorbed) irreversibly, saving bactericidal properties after repeated contacts with water. On the basis of literature analysis it is shown that ecologically safe “green synthesis” is a promising way to silver NPs produce with pronounced bactericidal efficiency, which is becoming more common due to the large resource of cheap plant raw materials.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Materials Chemistry,Colloid and Surface Chemistry,Physical and Theoretical Chemistry,Surfaces, Coatings and Films,Surfaces and Interfaces,Ceramics and Composites

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3