Low-temperature phase stability of ceramics in the ZrO2—Y2O3—CeO2 system produced after heat treatment of the starting powders at 850 °C

Author:

Marek I. O., ,Dudnik O. V.,Vynar V. A.,Red’ko V. P.,Ruban O. K., , , ,

Abstract

The low-temperature phase stability of materials in the ZrO2—Y2O3—CeO2 system with compositions, % (mol.): 97ZrO2—3Y2O3; 95ZrO2—3Y2O3—2CeO2; 92,5ZrO2—2,5Y2O3—5CeO2; 90ZrO2—2Y2O3—8CeO2; 88ZrO2—12CeO2 was studied. Treatment of materials in hydrothermal conditions under an increased holding time (14 hours) was used. The starting powders were produced by the hydrothermal synthesis in an alkaline medium and heat-treated at 850 °C. The samples were sintered at 1350 oC. The materials properties were investigated by the X-ray phase analysis and electron microscopy. The aging stability of ceramics was determined by the degree of phase transformation T-ZrO2 → M-ZrO2 under experimental conditions. Porous microstructures were formed in the samples, which differ in the size distribution of both grains and pores. A characteristic feature is the presence of various amounts of fine-grained fragments with a regular microstructure and the formation of both rounded and elongated grains.The phase transformation T-ZrO2 → M-ZrO2 leads to an increase of the samples porosity. This, in turn, contributes to the intensification of the ceramics aging. After 14 h the phase transformation T-ZrO2 → M-ZrO2 was found in four samples. In the sample 97ZrO2—3Y2O3, 46% of M-ZrO2 was formed; in the 95ZrO2—3Y2O3—2CeO2 sample, 48% of M-ZrO2 was formed; in the 92,5ZrO2—2,5Y2O3—5CeO2 sample, 39% of M-ZrO2 was formed. In the 90ZrO2—2Y2O3–8CeO2 sample ≈1% of M-ZrO2 appeared, and in the 88ZrO2—12CeO2 sample M-ZrO2 was not identified. Formation features of the solid solution during the doping of zirconia with yttrium oxide and cerium oxide, the amount of cerium oxide in a ZrO2-based solid solution, the phase transformation F-ZrO2 → T-ZrO2 during the sintering and the formation of a homogeneous microstructure contribute to increasing the low-temperature phase stability of samples both 90ZrO2—2Y2O3—8CeO2 and 88ZrO2—12CeO2 composition. During the microstructural design of ceramics in the ZrO2—Y2O3—CeO2 system with increased low-temperature phase stability, it is necessary to establish such a ratio of Y2O3 and CeO2 in the solid solution based on ZrO2 that would provide the necessary strength behavior according to the ceramics use. Keywords: ZrO2—Y2O3—CeO2 system, ZrO2-based solid solution, M-ZrO2 phase, aging, low-temperature phase stability.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3