ANALYSIS OF PHOTOMETRY OF THE SICH-2 SATELLITE ON A MULTI-YEAR OBSERVATION INTERVALS

Author:

Epishev V.P, ,Motrunich І.I.,Perig V.M.,Neubauer I.F.,Guranich P.P.,Susla A.I.,Koshkin M.I., , , , , ,

Abstract

On August 17, 2011, a Dnipro vehicle launched the Sich-2 satellite into Earth’s orbit from the Yasny launch base. Ukrainian optical observation stations immediately began recording the satellite’s photometric light curves. In mid-2012, it was established that the Sich-2 spacecraft had a certain period of self-rotation and may have failed. This was confirmed later by official sources. Based on long-term observations of the Sich-2 artificial satellite of the Earth from Uzhgorod and Odesa, its behavior in orbit from the moment of launch until 2022 was investigated. The paper reveals the possibilities of the photometric method in combination with positional data from the research on the dynamics of the rotation of space vehicles with three degrees of freedom and complex design features of surfaces. In the article, the authors determined that the axis of self-rotation of the Sich-2 spacecraft coincides with its vertical axis, which precesses around the direction “the center of the satellite — the center of the Earth”. It was found that a pair of opposite PSBs are placed perpendicular to each other. The calculated value of the orbital period of the satellite was Porb = 99.5 min. and the average value of the precession period Ppr ~ 90.5 sec. The change in the period of selfrotation of the Sich-2 spacecraft was analyzed, which has changed at an interval of 9 years after destabilization in the range of Po = 11.95…3.63…5.06 sec. It was also established that the precession period during the same time varied within Рpr = 71.0…234.0 …226.0 sec. The angle of the precession of the axis of rotation relative to the direction from the center of the satellite to the center of the Earth is within 38°…28°.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

Space and Planetary Science,Aerospace Engineering

Reference18 articles.

1. 1. Grigorevsky V.M. (1959). Determination of the satellite orientation in space using photometric data. Bul. stations optical observation of satellites, 10, 1-3. [In Russian]

2. 2. Grigorevsky V.M., Leikin G.A. (1960). Determination of the position of the axis of rotation of an elongated satellite in relation to the extreme values of brightness and the shift of the moments of the extremum. Bul. stations optical observation of satellites, 12, 3-9. [In Russian]

3. 3. Epishev V. P. (1983). Determination of the orientation of ASE in space by their mirror reflection. Astrometry and astrophysics, 50, 89-93. [In Russian]

4. 4. Kudak V.I., Perig V.M., Neubauer I.F. (2017). Studying of the own rotation period changes of satellite "Ajisai" on the interval 1986-2017. Uzhhorod University Scientific Herald. Series Physics, 41, 140-145 [In Ukrainian]

5. 5. Magnus K. (1974). Gyroscope, Theory and Application. M.: Mir, 526. [In Russian]

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3