The Features of Taxonomic Structure Formation of Soil Microbial Biome in Beta vulgaris Rhizosphere

Author:

Borko Yu.P., ,Patyka M.V.,Boiko M.V.,Honchar A.M.,Sinchenko V.M., , , ,

Abstract

The necessity to increase the production of quality agricultural products in order to minimize using of agrochemicals while maintaining high profitability of production are required a comprehensive study of the determining factor of soil fertility – its biological component. Research of the microbiocenoses formation in the plants rhizosphere at all ontogenesis stages will allow to uncover the mechanisms of microbial-plant interaction and develop effective ways to increase crop productivity with high functional activity and homeostasis of the soil microbiome. The goal is to study the structure of the microbial complex and biodiversity of Beta vulgaris rhizosphere during ontogenesis by classical microbiological and molecular-biological methods. Methods. The number of microorganisms was determined by the method of inoculation soil microbial suspension on agar nutrient media, the structure of the qualitative composition of microorganisms was identified by morphologically-cultural properties, the morphology of isolated isolates – by microscopy of fixed preparations. The diversity of soil microbial complexes was evaluated by the Shannon, Simpson, and Berger-Parker ecological indices. The taxonomic structure of prokaryotes was determined by pyrosequencing. Results. The differentiation of the soil microbiota number was observed during the Beta vulgaris ontogenesis due to the intensity production of root exudates by the plant. The number of bacteria and micromycetes are increased 1.8–2.3 times, however, in the phase of leaves closing in-row spacing, the number of fungal microbiota decreased by 46.4%. Microbial complexes were differed in the number of detected morphotypes (27–50) and in the structure of the distribution of dominant forms (the total number of dominant forms of bacteria was decreased during the growing season, micromycetes – was increased). Analysis of the prokaryotes metagenome by pyrosequencing made it possible to identify 214 operational taxonomic units, 10.1% of which are forms that are not cultivated on nutrient media, 23.3% are unclassified. Among the identified taxonomic units, 96.2% were identified at the order level, 85.7% – at the family level, 76.7% – at the genus level. Among the identified taxonomic units were 15 phyla bacteria and 1 – archaea, among which 96 taxonomic units, families – 167, genera – 214 we found at the level of microbial orders. The dominant forms among the identified phyla were Proteobacteria (65.7%) and Actinobacteria (20.5%); orders – Burkholderiales (38.7%) and Pseudomonadales (20.1%); families – Alcaligenacea (37.9%), Pseudomonadaceae (20.1 %); Gaiellaceae (5.7%), Nitrososphaeraceae (4.2%); genera – Achromobacter (31.5%) and Pseudomonas (19.9%). The soil microbial complex was characterized by high biodiversity according to the indicators According to the indicators of ecological indices, determined on the basis of the results of classical microbiological and molecular biological research methods, it is established that the microbial complex of the soil was characterized by high biodiversity. Although the Shannon (ISh=5.36) and Simpson (IS=0.87) indexes, based on the pyrosequencing method results, were significantly higher than similar indicators identified by classical microbiological methods. Conclusions. During the ontogenesis of Beta Vulgaris, including due to the intensity of plant production of root exudates, the number of bacteria and micromycetes in the rhizosphere of plants increased. It was accompanied by a redistribution of structural composition and an increase of the microorganisms’ diversity (ISh=5.36). It found that among the identified 214 taxonomic units, 10.1% – forms that are not cultivated on nutrient media, 23.3% – are unclassified. Our studies showed that the structure of the microbial complex of the plants’ rhizosphere reflects the characteristics of the soil and can be used as an indicator of ecological status. The obtained results (conducted for the first time in the Forest-Steppe of Ukraine) deepen the knowledge about the true scale of natural genetic diversity of microbial complexes and are a valuable asset for substantiating practical proposals for effective adaptive interactions in the plant-microorganism system to preserve the homeostasis agroecosystems.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3