Lactose Inducible Expression of Transcription Factor Gene SEF1 Increases Riboflavin Production in the Yeast Candida famata

Author:

Tsyrulnyk A.O., ,Fedorovych D.V.,Sobchuk S.M.,Dmytruk K.V.,Sibirny A.A., , , , ,

Abstract

Riboflavin (vitamin B2) is required for synthesis of the flavin coenzymes: riboflavin-5’-phosphate (flavin mononucleotide) and flavin adenine dinucleotide. Riboflavin is important biotechnological commodity with annual market around 250 million US dollars. It is mostly used as component of feed premixes for animals (80%), in food industry as food colorant, in medicine and component of multivitamin mixtures and as drug for treatment of some diseases. Over the past two decades, the microbial production of riboflavin by fermentation completely replaces the chemical synthetic route. The main producers of riboflavin in industry are engineered strains of the bacterium Bacillus subtilis and of the mycelial fungus Ashbya gossypii. Flavinogenic yeast Candida famata has great biosynthetic potential. Using combination of classical selection and metabolic engineering (overexpression of SEF1, RIB1 and RIB7 genes coding the positive regulator, the first and the last structural enzymes of riboflavin synthesis) resulted in the construction of genetically stable strain of C. famata that produces 16 gram of riboflavin per liter in bioreactor. However, the productivity of riboflavin biosynthesis remains still insufficient for industrial production of this vitamin. Studies of transcriptional regulation of genes involved in riboflavin synthesis and using of strong promoters of C. famata for construction of efficient producers of vitamin B2 are areas of both scientific and industrial interest. Aim. The aim of the current work was to improve riboflavin oversynthesis by the available C. famata strains in synthetic and natural lactose-containing media. Methods. The plasmid DNA isolation, restriction, ligation, electrophoresis in agarose gel, electrotransformation, and PCR were carried out by the standard methods. Riboflavin was assayed fluorometrically using solution of synthetic riboflavin as a standard. The cultivation of yeasts was carried out in YNB or YPD media containing different source of carbon and on whey. Results. The strains of C. famata expressed additional copy of central regulatory gene SEF1 under control of the promoter of LAC4 gene (coding for β–galactosidase) C. famata were constructed. The influence of SEF1 gene expression under control of lactose inducible promoter of CfLAC4 gene on riboflavin production was studied. It was shown that the C. famata strains containing “pLAC4_cf-SEF1_cf” expression cassette revealed 1.6-2.1-fold increase in riboflavin yield on lactose when compared to the parental strain. The riboflavin production constructed strains on whey reached 1.69 gram per liter in flask batch culture. Conclusions. The constructed strains containing additional copy of SEF1 gene under the control of LAC4 promoter is a perfect platform for development of industrial riboflavin production on by-product of dairy industry, whey.

Publisher

National Academy of Sciences of Ukraine (Co. LTD Ukrinformnauka) (Publications)

Subject

General Medicine

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3