Asma Yaprağı Türünün Sınıflandırılması için Doğal ve Sentetik Verilerden Derin Öznitelikler Çıkarma, Birleştirme ve Seçmeye Dayalı Yeni Bir Yöntem

Author:

İMAK Andaç1ORCID,DOĞAN Gürkan1ORCID,ŞENGÜR Abdülkadir2ORCID,ERGEN Burhan2ORCID

Affiliation:

1. MUNZUR ÜNİVERSİTESİ

2. FIRAT ÜNİVERSİTESİ

Abstract

Son yıllarda Türkiye’de zengin mineral, diyet lif ve vitamin içeren asma yapraklarının üretimi ve tüketimi yoğun olarak gerçekleşmektedir. Bununla birlikte hazır gıda sektöründe asma yapraklarından yapılan dolma yemeğine talep, farklı ülkelere ihracat olanaklarını da arttırmaktadır. Bunun gibi ticari tarım faaliyetlerinde sürdürülebilir bir pazarlama için kalite standartlarının oluşturulması önemlidir. Araştırmacılar, akıllı tarım uygulamalarında derin öğrenme ile birlikte olumlu ilerlemeler kaydetmiştir. Bu çalışmada, tüketim için kullanılacak asma yapraklarının türünün tanınması için yeni bir yöntem önerilmektedir. Önerilen yöntemde Ak, Ala Idris, Büzgülü, Dimnit ve Nazli olmak üzere 5 farklı asma yaprak türünden 500 görüntü içeren bir veri seti kullanılmıştır. Bu görüntülerden veri arttırma teknikleri ile 3500 adet görüntü elde edilmiştir. Ayrıca elde edilen görüntülere ESRGAN modeli uygulanarak daha ayrıntılı dokulardan oluşan bir veri kümesi elde edilmiştir. Bu görüntülerden öznitelik çıkarımı yapmak için VGG 19 derin öğrenme modeli kullanılmıştır. Oluşturulan iki ayrı veri setinden elde edilen öznitelikler birleştirilmiştir. Bu şekilde hibrit bir öznitelik çıkarıcı model oluşturulmuştur. PCA algoritması kullanılarak en iyi 175 adet öznitelik alt kümesi seçilmiştir. Son olarak elde edilen özniteliklerin sınıflandırılması için Destek Vektör Makinesi (DVM) kullanılarak %96,14 oranında doğruluk hesaplanmıştır.

Publisher

International Journal of Pure and Applied Sciences

Subject

Organic Chemistry,Biochemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3