Abstract
Son yıllarda Türkiye’de zengin mineral, diyet lif ve vitamin içeren asma yapraklarının üretimi ve tüketimi yoğun olarak gerçekleşmektedir. Bununla birlikte hazır gıda sektöründe asma yapraklarından yapılan dolma yemeğine talep, farklı ülkelere ihracat olanaklarını da arttırmaktadır. Bunun gibi ticari tarım faaliyetlerinde sürdürülebilir bir pazarlama için kalite standartlarının oluşturulması önemlidir. Araştırmacılar, akıllı tarım uygulamalarında derin öğrenme ile birlikte olumlu ilerlemeler kaydetmiştir. Bu çalışmada, tüketim için kullanılacak asma yapraklarının türünün tanınması için yeni bir yöntem önerilmektedir. Önerilen yöntemde Ak, Ala Idris, Büzgülü, Dimnit ve Nazli olmak üzere 5 farklı asma yaprak türünden 500 görüntü içeren bir veri seti kullanılmıştır. Bu görüntülerden veri arttırma teknikleri ile 3500 adet görüntü elde edilmiştir. Ayrıca elde edilen görüntülere ESRGAN modeli uygulanarak daha ayrıntılı dokulardan oluşan bir veri kümesi elde edilmiştir. Bu görüntülerden öznitelik çıkarımı yapmak için VGG 19 derin öğrenme modeli kullanılmıştır. Oluşturulan iki ayrı veri setinden elde edilen öznitelikler birleştirilmiştir. Bu şekilde hibrit bir öznitelik çıkarıcı model oluşturulmuştur. PCA algoritması kullanılarak en iyi 175 adet öznitelik alt kümesi seçilmiştir. Son olarak elde edilen özniteliklerin sınıflandırılması için Destek Vektör Makinesi (DVM) kullanılarak %96,14 oranında doğruluk hesaplanmıştır.
Publisher
International Journal of Pure and Applied Sciences
Subject
Organic Chemistry,Biochemistry
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献