Development of diagnostics of electron density and temperature for atmospheric-pressure helium plasma based on optical emission spectroscopy analysis and a collisional-radiative model

Author:

Lin Keren,Nezu Atsushi,Akatsuka Hiroshi

Abstract

Abstract An algorithm for diagnosing the electron density and temperature of helium plasma at atmospheric pressure has been developed based on a revised helium collisional-radiative (CR) model. Atomic collision processes are included, and part of the atomic data of electron collision processes in the conventional CR model has been updated to expand its valid pressure. The algorithm uses eight emission lines in the visible-wavelength range as inputs to determine the electron density, electron temperature, and number density of the two metastable states by fitting the number density of the states corresponding to the emission lines. The algorithm has a considerably small theoretical error. In the microwave-discharged low-pressure helium plasma experiment, the results obtained with the algorithm agreed well with the results obtained with the probe method. The electron density and temperature of the atmospheric-pressure helium plasma obtained with the algorithm agreed well with the results of the continuum spectrum analysis.

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3