Abstract
Abstract
We studied Fano interference between the Raman spectrum of G-band phonons and electron continuum in a multilayer graphene stack. The thickness and power dependencies of the Fano interference coefficient ∣1/q∣ in the G-mode, where q is the Fano asymmetry parameter, were spatially visualized and analyzed using the Gaussian-convoluted Breit–Wigner–Fano function. The estimated ∣1/q∣ decreases with an increase in the layer number and laser power in the low-power region at least for monolayer, bilayer, and trilayer graphene. In the higher-power region, ∣1/q∣ increases with power only for monolayer graphene. The observed behaviors of ∣1/q∣ reflect the phase difference of Raman signals from the electron continuum and G-band and possibly originate from changes in the electronic relaxation time and the Fermi level of graphene owing to the laser heating of the sample.
Funder
Ministry of Education, Culture, Sports, Science and Technology
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering