Band-to-band tunneling mechanism observed at room temperature in lateral non-degenerately doped nanoscale p-n and p-i-n silicon devices

Author:

Udhiarto Arief,Nuryadi Ratno,Anwar Miftahul,Prabhudesai Gaurang,Moraru Daniel

Abstract

Abstract Non-degenerately doped lateral nanoscale p-n and p-i-n silicon-on-insulator devices have been fabricated and characterized at room temperature (297 K). In both types of devices, p-type Si substrate is used as a backgate to modify the potential in the top Si layer in both forward- and reverse-bias regimes. In the forward-bias regime, both types of devices exhibit negative differential transconductance (NDT), with the current peak position and level controlled by the backgate and anode voltage. In the reverse-bias regime, the devices exhibit a sharp current increase as a function of the backgate voltage, which is a signature of the band-to-band tunneling (BTBT) mechanism. These findings suggest that NDT and the sharp increase of current, induced by the contribution of the BTBT mechanism, can be achieved even in non-degenerately doped backgated diodes, which opens new possibilities for BTBT-based functionalities, benefiting from a simple design and CMOS compatibility.

Funder

Grant-in-Aid for Scientific Research

Hibah Kolaborasi Riset Internasional 2019

Publisher

IOP Publishing

Subject

General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3