Abstract
Abstract
A normally-off hybrid-gate p-GaN high-electron-mobility transistor (HEMT) is presented in this paper. The gate region is designed as a parallel connection between the Schottky-gate and the metal–insulator–semiconductor gate by inserting a dielectric layer under part of the gate metal. Compared to the conventional Schottky-gate p-GaN HEMT, the fabricated hybrid-gate p-GaN HEMT showed a higher threshold voltage of 3.2 V (increases by 167%), and the maximum transconductance is only a slight decrease (reduces by 23%). At the same time, the forward gate leakage current of the hybrid-gate structure is smaller. Furthermore, through simulation, we revealed that the increase in the threshold voltage originated from the delayed full opening of the two-dimensional electron gas. And we also find that the parameters of the gate dielectric layer have a great influence on the performance of the device. The results show that the hybrid-gate structure is a more promising device structure.
Subject
General Physics and Astronomy,Physics and Astronomy (miscellaneous),General Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献