Abstract
Abstract
In recent years, energy harvesting technology has become a promising power supply method for low-power wireless sensor nodes. According to the application requirements of energy acquisition, a piezoelectric and electrostatic hybrid vibration energy harvester (HVEH) is proposed in this paper. Compared with other vibration energy harvesters, the proposed hybrid harvester is easier to miniaturize and integrate into a MEMS. The electromechanical coupling model of the hybrid harvester is established. The optimal design of the proposed harvester is carried out based on numerical simulation. The optimal matching impedance of piezoelectric and electrostatic modules are calculated based on numerical simulation and validated through experiments, which are 80–90 kΩ and 15–20 MΩ, respectively. The output power of the HVEH is increased by 0.04%, 0.08%, 0.102%, and 0.097%, when the excitation acceleration is 0.1 g, 0.15 g, 0.2 g, and 0.25 g, respectively, compared with the single piezoelectric module.
Funder
Graduate Student Innovation Project of Anhui Province
Subject
General Physics and Astronomy,General Engineering
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献