Mid-infrared photoacoustic spectroscopy using a quantum cascade laser for non-invasive blood component analysis

Author:

Maeno Masanobu,Kino Saiko,Matsuura YujiORCID

Abstract

Abstract We developed a photoacoustic spectroscopic method using mid-IR light for non-invasive analysis of blood components in living bodies. The ultra-low-volume photoacoustic cell enabled highly sensitive measurement, and, using a glucose-containing gel, the photoacoustic spectrum showed an almost linear relationship with the absorption spectrum. The optimum modulation frequency was determined both theoretically and experimentally using the photoacoustic spectra of glucose gels obtained at different modulation frequencies. The photoacoustic spectrum of the human wrist was measured at the same time as blood glucose levels were measured by blood sampling. Discriminant analysis of whether the blood glucose level was higher or lower than 130 mg dl−1 was relatively accurate (70.8%). The wavelengths used for discrimination were those absorbed by insulin and lipids, the levels of which change according to the blood glucose levels, and that absorbed by glucose.

Funder

Japan Society for the Promotion of Science

Publisher

IOP Publishing

Subject

General Physics and Astronomy,General Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3