Abstract
Abstract
Harnessing resonant tunneling transport in III-nitride semiconductors to boost the operating frequencies of electronic and photonic devices, requires a thorough understanding of the mechanisms that limit coherent tunneling injection. Towards this goal, we present a concerted experimental and theoretical study that elucidates the impact of the collector doping setback on the quantum transport characteristics of GaN/AlN resonant tunneling diodes (RTDs). Employing our analytical model for polar RTDs, we quantify the width of the resonant-tunneling line shape, demonstrating that the setback helps preserve coherent injection. This design results in consistently higher peak-to-valley-current ratios (PVCRs), obtaining a maximum PVCR = 2.01 at cryogenic temperatures.
Funder
Air Force Office of Scientific Research
Semiconductor Research Corporation
Office of Naval Research
National Science Foundation
Subject
General Physics and Astronomy,General Engineering
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献