Abstract
"We prove that the convergence theorems for Mann iteration used for approximation of the fixed points of demicontractive mappings in Hilbert spaces can be derived from the corresponding convergence theorems in the class of quasi-nonexpansive mappings. Our derivation is based on an important auxiliary lemma (Lemma \ref{lem3}), which shows that if $T$ is $k$-demicontractive, then for any $\lambda\in (0,1-k)$, $T_{\lambda}$ is quasi-nonexpansive. In this way we obtain a unifying technique of proof for various well known results in the fixed point theory of demicontractive mappings. We illustrate this reduction technique for the case of two classical convergence results in the class of demicontractive mappings: [M\u aru\c ster, \c St. The solution by iteration of nonlinear equations in Hilbert spaces. {\em Proc. Amer. Math. Soc.} {\bf 63} (1977), no. 1, 69--73] and [Hicks, T. L.; Kubicek, J. D. On the Mann iteration process in a Hilbert space. {\em J. Math. Anal. Appl.} {\bf 59} (1977), no. 3, 498--504]."
Publisher
Technical University of Cluj Napoca, North University Center of Baia Mare
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献