On discrete models of Boltzmann-type kinetic equations

Author:

Bobylev A. V.

Abstract

The known nonlinear kinetic equations, in particular, the wave kinetic equation and the quantum Nordheim–Uehling–Uhlenbeck equations are considered as a natural generalization of the classical spatially homogeneous Boltzmann equation. To this goal we introduce the general Boltzmann-type kinetic equation that depends on a function of four real variables \(F(x,y; v,w)\). The function \(F\) is assumed to satisfy certain simple relations. The main properties of this kinetic equation are studied. It is shown that the above mentioned specific kinetic equations correspond to different polynomial forms of the function \(F\). Then the problem of discretization of the general Boltzmann-type kinetic equation is considered on the basis of ideas similar to those used for construction of discrete velocity models of the Boltzmann equation. The main attention is paid to discrete models of the wave kinetic equation. It is shown that such models have a monotone functional similarly to the Boltzmann \(H\)-function. The theorem of existence, uniqueness and convergence to equilibrium of solutions to the Cauchy problem with any positive initial conditions is formulated and discussed. The differences in long time behaviour between solutions of the wave kinetic equation and solutions of its discrete models are also briefly discussed.

Publisher

Peoples' Friendship University of Russia

Reference15 articles.

1. Бобылев А.В. Об одном свойстве дискретных моделей волнового кинетического уравнения// Усп. мат. наук.- 2023.- 78, № 5.-С. 179-180.

2. Бобылев А.В., Куксин С.Б. Уравнение Больцмана и волновые кинетические уравнения// Препринты ИПМ им. М.В. Келдыша.- 2023.- 031.

3. Тихонов А.Н., Васильева А.Б., Свешников А.Г. Дифференциальные уравнения.- М.: Наука, 1980.

4. Arkeryd L. On low temperature kinetic theory: spin diffusion, Bose-Einstein condensates, anyons// J. Stat. Phys. -2013.-150.- С. 1063-1079.

5. Bobylev A.V. Boltzmann-type kinetic equation and discrete models// ArXiv.- 2023.-2312.16094 [mathph].

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3