The Effect of Zinc Oxide, Copper, and Silver Nanoparticles Synthesized by the Green Method for Controlling Strawberry Gray Mold Fungus, B. Cinerea Pers

Author:

Sareh Hashemi,Masoud Ahmadzadeh

Abstract

Gray mold disease, caused by the fungus Botrytis cinerea, causes heavy losses in strawberries. The use of chemical fungicides due to the dangers for humans and the environment has caused attention to reduce their consumption and use biological methods. In this research, the effects of zinc oxide, copper, and silver nanoparticles have been synthesized from an aqueous extract of cloves, and the probiotic bacteria Lactobacillus casei by the green method was investigated on the gray mold disease of strawberries. The results showed that concentrations of 10% of zinc oxide nanoparticles synthesized from aqueous extract of cloves can completely control this pathogen on the culture medium and the fruit. Zinc and silver nanoparticles produced by Lactobacillus casei prevented 93.7% and 81% of fungal growth in the culture medium, respectively. Other treatments did not show a good inhibitory effect on the fungus. All treatments were able to prevent 100% to 50% of fungal growth after 96 hours on strawberries. The investigation of the storage characteristics showed the positive effect of the examined nanoparticles on reducing the rate of change of the physicochemical characteristics of the strawberry fruit tissue. Apparent decay was significantly reduced and samples treated with nanoparticles scored higher in sensory evaluation compared to control. Also, investigating the toxicity of nanoparticles in this experiment on the HepG2 cell line showed that Compared to the control, copper and zinc nanoparticles did not have significant toxicity on cells, but silver nanoparticles led to 25% cell death. This research provides promising results in the field of using nanoparticles for pre-harvest and post-harvest control of plant diseases.

Publisher

Heighten Science Publications Corporation

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Nanomaterials for the Management of Crop Diseases: Methods and Applications;Nanoparticles in Plant Biotic Stress Management;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3