Failure-oriented-accelerated-testing (FOAT) and its role in assuring electronics reliability: review

Author:

E Suhir

Abstract

A highly focused and highly cost-effective failure-oriented-accelerated-testing (FOAT) suggested about a decade ago as an experimental basis of the novel probabilistic design for reliability (PDfR) concept is intended to be carried out at the design stage of a new electronic packaging technology and when high operational reliability (like the one required, e.g., for aerospace, military, or long-haul communication applications) is a must. On the other hand, burn-in-testing (BIT) that is routinely conducted at the manufacturing stage of almost every IC product is also of a FOAT type: it is aimed at eliminating the infant mortality portion (IMP) of the bathtub curve (BTC) by getting rid of the low reliability “freaks” prior to shipping the “healthy” products, i.e., those that survived BIT, to the customer(s). When FOAT is conducted, a physically meaningful constitutive equation, such as the multi-parametric Boltzmann-Arrhenius-Zhurkov (BAZ) model, should be employed to predict, from the FOAT data, the probability of failure and the corresponding useful lifetime of the product in the field, and, from the BIT data, as has been recently demonstrated, - the adequate level and duration of the applied stressors, as well as the (low, of course) activation energies of the “freaks”. Both types of FOAT are addressed in this review using analytical (“mathematical”) predictive modeling. The general concepts are illustrated by numerical examples. It is concluded that predictive modeling should always be conducted prior to and during the actual testing and that analytical modeling should always complement computer simulations. Future work should be focused on the experimental verification of the obtained findings and recommendations.

Publisher

Heighten Science Publications Corporation

Subject

General Chemical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3