Corrosion Behavior of X80 Steel in a Simulated Soil Solution Under Square-Wave Current Interference

Author:

Dong Liang1ORCID,Gan Tiansiyu1,Song Qinfeng1,Qiu Yan1,Zhang Shaohua1,Zhao Yongtao2

Affiliation:

1. *School of Petroleum and Natural Gas Engineering, Changzhou University, Changzhou, 213164, China.

2. **Sunrui Marine Environment Engineering Co., Ltd., Qingdao, 266101, China.

Abstract

The buried pipeline is disturbed by the dynamic direct current (DC) stray current with the subway as the main leakage source, which has the safety risk of accelerating corrosion, resulting in pipeline failure, which not only causes economic losses but also threatens personal safety. Therefore, it is necessary to study the corrosion behavior of pipeline steel under dynamic DC interference. The corrosion behavior of X80 steel under dynamic DC interference were studied by a mass loss test, alternating current impedance, circuit simulation, x-ray diffraction, and a Pourbaix diagram. Combined with the corrosion efficiency and Pourbaix diagram of the Fe-H2O system, the reversible process and reduction process mechanism in the Faraday process are proposed. The reason why the corrosion efficiency slows down in the process of non-Faraday is analyzed by the electric double-layer model of equivalent circuit calculation. In addition, based on the above corrosion process, the corresponding conceptual model of the corrosion mechanism is proposed. The experimental results show that with the asymmetry of positive and negative half-cycle interference duration and the increase of current density, the corrosion efficiency, and current corrosion efficiency of X80 steel decrease, and local corrosion intensifies. The length of the negative half-cycle interference affects the capacitive charge-discharge effect at the metal/solution interface and the reduction reaction process of corrosion products, resulting in corrosion slowing down and corrosion efficiency reduction. This is also an important reason for the reduction of corrosion mass loss observed in the experiment compared with steady-state DC.

Publisher

Association for Materials Protection and Performance (AMPP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3