Reliance of Corrosion Characteristics for Two Iron-Based Alloys on the Water Content in 1-Butyl-3-Methylimidazolium Tetrafluoroborate

Author:

Yan Ying1,Li Mengting1ORCID,Chen Peng1,Wang Shuyuan1,Shi Chunjie1,Zhou Hao2,Wu Laiming2,Cai Lankun1ORCID

Affiliation:

1. *National Engineering Laboratory for Industrial Wastewater Treatment, East China University of Science and Technology, Shanghai 200237, China.

2. **Shanghai Museum, Shanghai 200050, China.

Abstract

Although the corrosion of iron-based alloys by ionic liquids (ILs) has been reported, the influence of trace water in ILs on its corrosion mechanism is often ignored. In this work, we investigated the corrosion behavior of Q235 carbon steel (Q235 CS) and 304 stainless steel (304 SS) exposed to 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIM]BF4) with trace water (0.5 wt% to 4.0 wt%) at 323 K. Electrochemical tests and surface analysis manifested that the increasing water content accelerated corrosion of the two iron-based alloys in [BMIM]BF4. A nontypical passivation zone was observed for Q235 CS, while 304 SS exhibited completely active dissolution and its corrosion situation was not as serious as Q235 CS. The occurrence of pitting corrosion is responsible for 304 SS behaviors in [BMIM]BF4. Some corrosion products accumulated on the surface of both iron-based alloys were similar, including FeF2, FeF3, FeO, Fe2O3, and/or FeOOH. Gas products during corrosion were also monitored to avoid the complicated cathodic depolarization process, and it was found to be composed of BF3, HF, and H2. Finally, the corrosion mechanism of iron-based alloys in ILs with trace water was proposed. The illustrated mechanism would be meaningful for understanding the similar corrosiveness to iron-based alloys.

Publisher

Association for Materials Protection and Performance (AMPP)

Subject

General Materials Science,General Chemical Engineering,General Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3